AD-AL08 108 TEXAS UNIV AT AUSTIN DEPT OF COMPUTER SCIENCES F/¢ 9/2
DECISION SUPPORT SYSTENSS A PRELIMINARY STUDY. (L)
SEP 77 R T YEH» W W BLEDSOEs, M CHANDY NOOO39=T77~C=0254

UNCLASSIFIED TR=74

NL
u .

2 s

o

s £
T

=
22 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUKREAL GF JTANDAR[, (4 A

ADA1C8] 04

APPROVED FOR FURTTC RETFASE
DISTRIBUTI N UNLIMITED

SOFTWARE AND DATA BASE ENGINEERING GROUP
DEPARTMENT OF COMPUTER SCHENCI

f Thl'i d 3':1‘?';.:“@

ALY VI N
é‘?‘_ Piislic pa], s }\'(‘J“ ' APproved
Istibution je oo 000 maly g

IV A
y
GBI

THE UNIVERSETY OF TENXAS AT AUNTIN

{81 1. 3 0=

o3 i3

RELIMINARY STUDY*

i S .

¢

. by
— Raymond T.|Yeh, Woodrow W./Bledsoe, Mani
. » Chandy, Philip /Chang, Daniel/Chester/’JEEk

1.ipovskt, ~Jayadey WMisra, Laurant Siklossy,
and Robert Simmons
+ J

e ; /7
-7 TR-74

IR —y

N s am—

T e

"r/
s

XPPROTVED ¥R PURLIC

LEATRIZUPION

&%

{

) i
This research is supported by ARPA under contractfN00039-77—Cﬁ9254f

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

S

- V2
LN

i

TN S8 et

8 oy R PG = R NI i A - i T s A S it

FORWARD

This report is the result of a study on Decision Support System sponsored
by ARPA. A seminar, three times a week, was conducted during the summer of
1977 for the study. Participants of the seminar include my colleagues:

W. W. Bledsoe, M. Chandy, P. Chang, D. Chester, T. Kunii, J. Lipovski, J. Misra,
L. Siklossy, and R. Simmons; and my students: A. Araya, J. Baker, M. Comner,
C. Reynolds, H. Kunii, S. Lee, T. Mao, and T. Tien.

The core of this report is based on written materials provided to me by
the participants of the seminar. I am, of course, responsible for all the
mistakes that may occur.

Raymond T. Yeh
Austin, Texas
September, 1977

Accesaion For
Tmeis o gPoal

LrTS TAR r-
T:anmuanneed [

Jecvivlonlian. oL

N .
e A

- i

Table of Contents

1. Introduction..... ceesnens ceesarecse et esesscatreesrersoacnns R |

|
oo o e ot i 8)

2. Characteristic and Requirements for Future Decision

Support Systems..... e seaas et ecetetesseiterecetananasane N 4
3. An Example....... ceecstacsesensenansnas Ceeecssssessressseansraaan A
4. Problem Domain....oeesescesssosscceosessonasanes B -]
5. Technical Findings............. freesneane sesecssesrssecarencenns .11
a. System Structure....... cetecenasnns ceecennen cences ceseane 11
E b. Semantic Representation.........cecveveennecnnns ceseeceneel2
c. Performance Modeling......ccvveveneenennnen cesesenen PRI K1

d. Software Design: Development of a Comprehensive
Methodology and ToolS....ceeovvees Cececeanans ceerestnecans 18

e. Computer Architecture For Decision Support Systems........ 42

f. Reliability Issues in the Design of Distributed
Data BaseS.......... cesseenes Ceersesesssecanssareann veenes db

6. Appendices

Appendix 1: Semantic Representations for an Integrated
Data System -~ R. F. Simmons

- Appendix 2: Toward a Design Methodology for DBMS: A
Software Engineering Approach -- R. T. Yeh and
J. Baker 3
Appendix 3: Software Design Tools -- D. Chester

Appendix 4: A Method for Control of the Interaction
of Concurrent Processes — M. H. Conner

P

Appendix 5: Some Thoughts on Automatic Theorem Proving
q in Data Base Design and Use —- W. W. Bledsoe

; Appendix 6: A Computer Architecture for a FDSS 1

|
|

Introduction

Few people knowledgeable in computer science would deny the assertion
that we are in the midst of a revolution caused by the increased availability
and power of computers. Yet, few can predict what lies ahead just two
decades from now based purely on what modern electronic computers have
accomplished over the last 25 years. But one thing is sure, the information
explosion will continue and at an ever increasing rate. This, coupled with
the continued declining cost in computing, will make data processing our
number one national asset in the management and organization of our resources.
We predict that the need for computer-based decision support system (DSS)
will increase dramatically.

During the 60's, much hope has been placed on the so called "Information
Management Systems' to support humans in various stages of decision making.
While many systems have been developed, the dream was never quite realized
due to the fact that technology was not there. If history is any guide in
computing, we can safely say that demand on the sophistication and usage
of DSS will exceed its actual capability by a wide margin. In light of the
trend that this nation will become so dependent on such systems that mistakes
can have serious economic, political or environmental impacts, it is important
that resources be devoted now toward the understanding and construction of

such systems.

~ This report contains findings of a summer study{/;;;;orted by ARPA,Eon
the requirements and design of future decision support systems (FDSS). It
is our opinion that computer science as a discipline has finally reached
sufficient maturity to provide a technological basis for realizing much of

~ 3 LK)

the goal of "information management systems" of the last decade. -

Ve

U R T S

oo . | - -) . S ' e vﬂ

2. Characteristics and Requirements for Future Decision Support Systems
\There are many decision support systems (DSS) which work well today.
However, most of these with any sophistication are specialized small systems.

Large systems are usually badly designed with ad hoc techniques. As a con-

sequence, it is usually extremely costly to modify such systems. The study

here is not intended to come up with piecemeal solutions to the existing

problems, but rather to investigate the feasibility of developing a methodology i
for constructing decision support systems which can meet the demands of the

| next decade. We thi;k that through this more systematic approach to the problem
as a whole, many of the existing problems will also be solved. We shall first

outline some of the important features of FDSS.

a. Physical Characteristics of FDSS.

i) System is geographically distributed.

We expect most large systems to consist of a number of smaller

DSS, organized in parallel or in hierarchies, and communicating

with each other (see example in section 3).
) ii) System is large.
It usually contains vast amounts of data of different types,

and many processors.

iii) System will be used by many different kinds of users for

decision support.
iv) Dynamic environment.
Data is constantly added or deleted from the system, and
requirements are changing (due to new applications or new
; machines, etc.).

b. Requirements for FDSS

] i) Adaptability and Modifiability

DSS should be adaptable to a wide variety of problem domains.

-2-

In particular, the system should be able to evolve to improve the
quality of its support. This can be done by adjustments made either
on the information content or structure of the system.

The design for the system should be such that usually small
changes in the environment of the system should cause correspondingly
small changes in the system.

Intelligence

We expect that more sophisticated DSS should be capable of
engaging in complex dialogues with users, and is capable of providing
fast response to complex queries most of the time. We shall make
explicit two features that DSS should have to achieve this goal.

ii.a) Domain and goal knowledge

Besides the obvious knowledge of the domain, the DSS should

have general knowledge of the types of goals of interest to the user.

Why a knowledge of goals? Since the data base is assumed very

large, we must assume that the user does not know all the implicationms.

Hence, it is the system's responsibility to point out to the user

relevant data of which the user may not be aware, and which he may

not have thought to ask, but which would help his goals. For example,
a system to support software design should be able to evaluate and
respond to a query such as "I intend to make such-and-such changes

in the design, what are the effects of these changes? Why?" The
system must therefore maintain a general awareness of the domain

as it 1s being queried and modified by the user. This knowledge
about goals represents the knowledge of (human) experts in different

problem situations.

-

oo - Je -

A o . PN pury

SO

The DSS's answers should be relevant, i.e., be directed
toward the known general goals of the user. They should also be
explicit and given at the level of thought that is familiar and
comfortable to the user.

ii.b) Generality

DSS should handle unexpected situations, by asking questions
of the user if necessary. We cannot anticipate every type of query
by having a specific program to answer it,

iii) Trustworthiness

We must have a high degree of confidence in such a system.
The notion of trustworthiness implies that the system should be
reliable, robust, available on demand, and secure.
1 3. An Example. A scenario is described in the following to illustrate some

of the desirable properties of FDSS and the environments that surround it.

Dramatis Personae
A client interested in ordering oil. Several DSS: local, regional, nataional.
A salesman (we may assume that the salesman converses with the DSS), trans-

lating the client's requests into a language understood by the DSS. (By DSS

3 we shall mean the local DSS, and generally assume a combination Salesman/DSS

to avoid problems of translating client's requests to the DSS, or interpreting

} output from the DSS.)
i C = client.
DSS = local DSS with salesman's help.

S = Salesman as distinguished for the DSS (i.e., the human being).

Scenario: (parenthesized statements are explanatory comments about the DSS).
’ C: I need 1,000 units of oil, quality premium, at Harlingen depot.

DSS: when?

(an order needs a date of delivery)

—4-

C: within ten days.

DSS: 1,000 units will be available at $14/unit within the specified time
period. 800 units will be shipped from A and 200 from B.
(System uses operations research tools. For example, it may utilize
a "Linear Programming" program to determine an optimal solution.
This implies that the DSS knows about the existence of this program,
and the kind of inputs and outputs associated with it.)

S: Consider shipping all 1,000 units from A to save extra shipping cost.

(Salesman intervenes to try to improve the solution from the DSS.)

DSS: Sending the additional 200 units from A would increase overall cost.

S: why?

DSS: An additional truck from A would be required carrying only 200 units.
In the proposed solution, the truck from A is full, as it is delivering

01l to other customer.

(DSS explains answer by comparing the solutions. The "discontinuity"

in the truck capacities is noticed.)

C: Okay.

DSS: Before confirming, let me mention that if you are satisfied with

only 800 units, the cost per unit will be only $13.40/unit.

(The dimensions of an order are: size, cost,delivery date, delivery

delay, security of the delivery, price guarantee, etc., the system

is now looking for discontinuities near the order as given by the

customer.)

C: No, 800 is not enough.

DSS: I can ship up to 1,500 units at almost no additional shipping cost.

(First, a discontinuity down from the size of the order was noticed.

It was found by considering tables of prices and amounts of oil

available at the price. Now the system has found a discontinuity

up from the order size.)

C: OK, ship 1,200 i

DSS: 1If you can wait 4-6 extra days, I should be able to ship these amounts

for less.
{The system now looks for discontinuities in the price of the oil
if the delivery date is changed. It consults tables of expected

deliveries of oil in times close to the order.)

C: How come?

DSS: There is a scheduled ship arrival with cheaper oil.

(DSS explains, using some inferencing.)

C: What will be the cost then?
(The original DSS answer was qualitative: "for less". The customer

wants something more precise.)
DSS: 1I'll need 20 minutes before I can compute that exactly.
Approximate price: $12.80 -~ $13.35. If you call back after

5:00 p.m. I can compute the price immediately.

(The system can give approximate answers, and knows about its
capabilities, and typical 'system loads.)
C: I can't wait 4-6 days for the shipment, and I am willing to pay up
to $14.50/unit. Please confirm.
S. 1I'll try to confirm the order now.
(DSS has access to summary information about available oil at various
sites. This information is updated periodically, say every half day.)
DSS2 (Regional DSS): There are only 400 units left at A.
(In the meantime some capacity at A has been utilized. DSS did not
know about it. At confirmation time, DSS2 is interrogated.)

DSS: I can confirm shipment of 400 units from A and 600 from B, average

cost, $14.25.

DSS3 (National DSS): Stock at A keeps running out. We must increase J
shipments to A. I suggest a shipment increase of 257%.
(The National DSS keeps dynamic information on transactions, and

attempts to ilmprove oil delivery performance.)

C: I want to plan next month's delivery schedule. I want 800 units on
the 1lst, 7th, 18th and 30th. How much would it cost me?

DSS: I cannot confirm delivery on the 1lst, closest date would be the 3rd.

C: Okay.

DSS: Shall I confirm the following delivery schedule and cost?

Location Date Cosc/Unit
A 3rd $12
B 10th 12.50 g
C 19th 11 é
D 30th 13
C: Okay. ;

DSS: All confirmed except delivery on 30th. Change to delivery from

location A at $13.10/unit. Okay?

C: Okay.

(An illustration of unexpected events.)

DSS3 to DSS: Bad weather at sea. Arrival of ship at D delayed 8 days
approximately.

DSS to S: Customers C2 and C3 have confirmed orders from D. They
must be contacted to check whether they can accept the delay. If -
not, we need to find other sources to fill their order.

(DSS keeps a watch on the weather to the extent that it can
influence such dimensions of an order as: time of arrival,
quantity of arrival, possible loss at sea, increased cost due

to delays, strikes, etc.)

Problem Domain

In the previous e:.ample, we try to exemplify several concepts which we
shall discuss in this section and point out general problems to be encountered
in FDSS research.

a. Discontinuities

The decision support system (DSS) provides information to the
user about discontinuities near the area presently being considered
by the user. (A discontinuity exists if a small change in one parameter
of the domain results in a large change in another parameter of the
domain.) Although the use of "discontinuity' concept for the design of
DSS is new, we have quite a bit of experience in the design of an airline
reservation system for western Europe utilizing this idea.

b. Distributed data

Data 1is distributed at different sites. Some sites may have cnly
summary or probabilistic data. In our scenario, there is a hierarchy
of authority, with higher level DSS having only the summary information.
Some problems encountered here include the consistency of information at
different sites, data and process migration, access rights, performance
issues, etc.

c¢. Knowledge bases

i) Decision support capabilities - the system can help the user make
knowledgeable decisions. This not only implies that the system
has specific knowledge bases, but also must contain general know-
ledge about the world. (For example, simulation models.)

ii) Self-knowledge -~ the DSS has information about its own capabilities

such as expected costs of running its programs.

i . —s e - e e ———

d. Inference capabilities

This aspe:t is of course something that artificial intelligence (A.I.)
has been concerned with for sometime. However, most of the existing A.I.
systems are small by comparison, and it is not clear that techniques

and principles used in constructing small systems can scale up. To

overcome this barrier of size, it seems that certain conceptual tools
are necessary. We list a few here:

i) Ready accesss to data and procedures

The designer must be able to think of his large data and

large procedure base as readily accessable, so that he does not

get sidetracked in data access issues,

ii) Conceptual neighborhoods

This idea is used during retrieval (relevant information is

information in the same neighborhood) and while searching a problem

space (nearness to a discontinuity or approximation of a solution).

It is an obvious extension of focused access to data. We not

"close" to these

only wish to access specific data, but also data
specific data. Implementation would depend on the metrics or
topology of the data.

iii) Problem-solving tools

The designer should have a set of formalized concepts or
techniques such as planning (subgoaling, problem reduction),
backtracking, plan execution (simulation), etc., at his disposal

as tools for general problem solving.

iv) Concurrency

For large systems, it must be the case that a designer can

think in terms of many processes running concurrently.

b atmmmiinitn

v) Information types

The information in a DSS must be of many types. We can
distinguish at least:
~ environment knowledge (position and status of troops, trans-

port capabilities, etc.).

- user models. In the past they were often implicit. They must
be made explicit. (For the same questions, the answers given
to the Secretary of State or a colonel stationed in Turkey
will usually differ.)

- system self-knowledge. The DSS should be able to describe its
capabilities, explain its logical organization and the methods
it used to answer questions, etc.

We think that adequate engineering support for these conceptual
tools can overcome the barrier of size. We also believe that new
computer hardware.is crucial for providing the necessary engineering
support. In particular, support for content-addressibility (parallel
access to data and procedures), context-addressibility)'semantic
paging' for retrieving relevant information), and concurrent
evaluation of conditions (hardware implementations of demons.)

More detailed discussions of the hardware support will be provided
in the next section.

Dynamic environment

The example illustrated that data changes through time. However,
in reality, the whole environment; requirements, processors, data, etc.,

changes through time.

-10~

When constructing very large systems with dynamic environment, the
designer is forced to consider evolving systems rather than fixed
systems. One may apprcach this problem by designing a flexible system
structure so that small changes in system environment will impact a
correspondingly small change of the system. Or, one may predicate the
system's usage and its environmental changes in the near future so that
contengencies for growth can be provided in the design of the system.

In both approaches, a methodology for design and modeling is needed.

While it is possible to borrow from existing software design methodology i
and performance modeling techniques, much more is needed. For example,

in current design methodology, design documentation is almost totally

ignored. Similarly, performance evaluation is usually done too late -

after the system has been constructed. How can performance modeling

be iucorporated into the design phase is an important problem in the

design of evolving systems!

In order to develop a methodology for the realization of FDSS,
we conclude that knowledge in many diverse disciplines of computer
science including software engineering, artificial intelligence,
modeling, data management, and computer architecture, must be brought
to bear on these problems. We shall present our technical findings in
the next section.

5. Technical Findings

a. System Structure

It is a well accepted principle today that large software systems
should be structured hierarchically with each level in the hierarchy

described by an abstract machine which is implemented by the machine at

the next lower level.

In Figure 1, we propose a hierarchical organization of language
interpreters, memory management systems, and hardware that we believe
can provide an integrated data system for decision support in the near
future.

The proposed system can be accessed by the user via many languages;
a subset of English, a Formal Data language, and Predicate Logic, etc.
Other languages are implied by the various support systems s.ch as
statistical and mathematical packages, graphics, and various models;
economic, political, etc. Much complexity is implied for understanding
statements, questions and commands in the several languages that have
been mentioned. Each language requires an interpreter that embodies a
description of the language it can accept and a set of transformations
to produce representations of its input in the common language of
semantic relations. The prevalence of inference rules introduces
virtual data paths of potentially infinite length and questions
requiring many inference rules for computing their answers may greatly
multiply the number of data accesses in the system.

Effective computation of inferences will require improved architecture
with parallel processing capability among shared fast memories as well
as disc processors such as the proposed CASSM system that can provide
parallel disc searching capability. (see Appendix 6).

It should be pointed out that levels in the proposed system are not

fixed, but is rather flexible depending on the specific system (see
part d below). In the next few subsections, we shall focus our attention
on various problems and issues associated with such a proposed system.

Semantic Representation

One goal for data management research is an integrated data system

~12-

e %

——

h_

ENGLISH
SUBSET

'“-w
FORMAL DATA LISP OR
PRED LOGIC LANG FOR IMPL. LANG
(KOWALSKL TABLES, TEXT
SYNTAX) .

SUPPORT FUNCTIONS

MODELS, MATH SUPPORT, STAT PKG,

GRAMMARS, TRANSLATORS, ETC.

INTERPRETERS

ASSERT, QUERY, DELETE

OF PROCESSES

S

INDEXED SEMANTIC REPRESENTATION OF , HEMORY
ALL DATA - MANAGEMENT
QUANTIFIED SEMANTIC NETWORK SYSTEMS
o
ATOMS, LISTS, FUNCTIONS s
|
{
|
DESIRED ARCHITECTURE
CASSM DISCS
NETWORK OF PROCESSORS
HARDWARE

FIGURE 1,

—

o N

- A proposed organization for an Integrated Data System

T . Al

that uses a common representation for tables, logical assertions, and
text. Tabular information is the stock in trade of current data
management systems and its usefulness is well established. Text is a
term that describes the content of general files of symbolic material
such as programs, unprocessed data, and natural language. Logical
assertions include simple propositions, inference rules, and systems
of 2vsertions that are in fact predicate logic programs to accomplish
certain computations, e.g., proofs of programs, grammatical analysis
and problem solving.

A unified representation for all these materials is required to
minimize the complexity of the system. A possible common representation
formalism into which logical assertions (tuples), tables, and text may
be transformed is Quantified Semantic Networks. The networks provide
indexing to any extent desired and a classification system for all
elements of vocabulary used. They are generally operated on by three
operators, ASSERT, DELETE, and QUERY, and include full logical inference
capability. In Appendix 1, the power of quantified semantic network
for the proposed integrated data system will be discussed in detail.

Performance Modeling

Modeling will play a curcial role in the development of a design
methodlolgy for FDSS. We shall identify a few areas involving modeling.
i) One of the contrasts of existing data base management systems and

Al systems is that in DBMS design extreme care is used to minimize
the storage, whereas full indexing is usually employed for AI
systems for flexibility. It is clear that flexibility is necessary
for FDSS and must be paid for. The question is, how much? In

our proposed system for an integrated data system, we advocate the

-14-

L

ii)

use of quantified semantic networks for representing all kinds of
data. It is necessary to know the tradeoff between flexibility

and storage inefficiency at each level of the system hierarchy!

We believe that performance models should be set up for such a
system, with levels of abstraction clearly identified, so that such
tradeoffs can be measured in a relatively precise manner.

Subsystem Performance: Competition and Interference in Distributed

Systems

Performance modeling of program subsystems within a larger
geographically distribured hardware system configuration have not
been fully accomplished. The transition to a distributed environment
with network interconnections and hetergeneous host computers adds
an extra dimension of complexity. Performance characteristics of
the computer network and the associated host computers must be
estimated under varying workload conditions ans the effective
resource availability to the given subsystem determined under
varying load conditions. The performance of the specific subsystem
in question can then be predicted through analysis of competition
with other programs for the effective amounts of system resources.
This characterization will require, however, the determination of
the performance of the program as a function of the competing pro-
grams, the system configuration and the effective resource levels
available under varying workloads. The National Software Works (NSW)
is a prime example of a program which operates in such a competitive
distributed environment. NSW competes with the other processes

extant on the ARPANET, both for network resources and for resources

with the host computers.

~15-

r?—————

1ii)

We can use NSW as an example of the types of factors which
are involved in subsystem performance analysis. Questions that
we are interested in (in WW terminology) include:

. How does MSG response time vary with the TENEX "pie-slice
(fraction of CPU time dedicated to NSW)?
How does the non-NSW workload on the TENEX PDP-10's impact
NSW performance?

. How will changing the hardware configuration (for instance,
increasing the amount of main memory) impact performance?

. Can similar performance tools be used to analyze MSG running
on other machines, such as an IBM 3707

. How will network load impact performance of NSW functions
operating on geographically distributed machines?

Reliability Models

Reliability plans for distributed data base systems are complex
because of the number of factors that need to be considered.
Enhanced reliability is achieved at the expense of additional hard-
ware and increased processing and communication requirements. It

is very important to estimate the overhead in enhanced reliability

protocols. It is, therefore, necessary to have modleing tools to

predict the impact of performance of different reliability planms.

Atitnthens

Our overall goal is to model the interrelationships between

reliability and performance. For instance, from the point of

view of rapid recovery it is helpful to have two copies of a file
stored in proximate locations in a network (RECOVERY ISSUE).
Proximate copies also reduce the overhead of maintaining consistent

copies (CONSISTENCY ISSUE). However, from the viewpoint of . btaining

iv)

imesnialiiie. . : [TRDVEIR SO Besaaiin-aniundh

rapid responses to queries it may be preferable to have copies
placed in widely separated locations (PERFORMANCE ISSUE). We pro-
pose to build performance models to help resolve these tradeoffs.

Design of Evolving Systems

We cannot afford systems which require drastic expenditures
to adapt to changing environments. It is generally accepted that
rapidly changing environments are a fact of life in the computing
area and especially so in decision support systems. There are two
ways of designing systems to handle the costs required to adapt
systems to constantly changing user requirements. One approach is
to desigr systems to meet all eventualities without attempting to
specify what contingencies are likely to arise in each specific

L4

case. ‘a2 second approach is to require planners to consider
pos«ibie contingencies, evaluate (rough) probability estimates of
differiynat scenarios, and then plan systems to adapt gracefully to
probable contingencies. Scenarios may be specified in terms of
pessimistic, average and optimistic estimates. The process of
gauging future contingencies must proceed periodically, as the
system evolves. A static design is concerned with how to distribute
data and processors, select communication line topologies, and so.on.
However, a contingency plan must include a complete design for the
current period and then specify appropriate actions for probable
contingencies in future periods; for instance, IF after two years,
the level of activity in the Gulf region develops as expected, THEN

increase the processing capability in that region as planned;

HOWEVER, IF the level of activity is much less than expected, THEN

shift processing capability to headquarters..... It is important

-17-

that such performance models be part of the overall design model
so that performance of the system can be controlled at the design
level.

d. Software Design: Development of a Comprehensive Methodology and Tools

i) Design Philosophy

We advdcate a design approach that is somewhat like the process
of sculpting a block of stone; this is done by chipping it away
gradually as the finalized sculpture takes shape. In order for the
software designers to do their refinement steps effectively, the
designers need guidance as to where to chip next, and tools for

measuring how close they are getting to their goal.

Formally, we propose to characterize the design process by
means of three interacting models: a model of the system structure,
a model for system (performance) evaluation, and a model for design

structure documentation. These three models will be refined

simultaneously during the design. Furthermore, in order to allow

a designer to "tiaker" with his design, we propose a computer
processable specification language and tools so that early feedback
can be provided to both the deisgner for the quality of his design,
or to the user for the inadequacy (if any) of his requirements.

In the next few subsections, we shall describe briefly the
progress we have made toward the development of a comprehensive 1
design methodology with the aforementioned philosophy in mind, ' :
and identify the problems that remain to be tackled.

ii) Design Process

‘ Our concept of the design process is that it consists of many

stages, each of which has a model that satisfies some of the con-

straints on the design and a set of constraints that have yet to

i ~18-

be satisfied. Figure 2 shows the different paths that the process
can follow from the original constraints (requirements) and the null
model to the final model and null constraints.

As can be seen from the figure, each step along a path can be
expanded in several different directions to reach different final
designs. Thus, each model represents a family of designs. By
providing suitable means for documenting models, we make it easier
for the designers to back up and try another member of the family
when one path leads to a bad design. We also make it possible to
consider other designs in the family when system requirements are
changed, either during the design process or after the system has
been in service for some time.

Each model along the design path is a refinement of the pre-
vious one. The first models only exhibit the gross behavior of the
desired system without consideration of performance and hardware
requirements. This is an especially important phase in the develop-
ment of the decision support systems because it clarifies the purpose

~ of the system by requiring the designers to state precisely what it

A is they want the system to do. At the same time they are able to

simulate the system at this early stage and modify it until it
appears to be what they really want, Later models begin to reflect
the efficiency and hardware considerations as the designers begin 3
to outline the algorithms that will actually be run on the target
machine. Eventually through this process, the original constraints
get satisfied and the design is ready for transfer to the hardware
of the actual system.

iii) Three Models of Design

-19-

Mﬁ g
l
CONSTRAINTS (=requirements) ,
1
CONSTRAINTS MODEL CONSTRAINTS MODEL
]
| \
/ .
: i :
CONSTRAINTS MODEL
CONSTRAINTS MODEL '
1
'
‘
1]
' !
i
X FINAL MODEL
)
L}
'
v
FINAL MODEL

FIGURE 2. - Possible paths in the design process.

iii.a) System Structure

We envision the design of a DSS as a stepwise
refinement process of functional abstraction which begins with the
construction of a "top-level" abstract machine, M., satisfying the
functional requirements of some high level requirements specification.
This machine consists of a set of data abstractions represented by
formal module specifications. Each module specification is self-
contained in the sense that it specifies the complete set of

operations which define the nature of the data abstraction.

Collectively, these data abstractions define the data model which
is visible to the user of the machine. :
In the next step of the process, another abstract ;

machine, M , representing a "refinement"' of Mn is designed. 1Its

n-1
data abstractions are chosen in such a way that they can "implement" 4
those of Mn‘ Basically, this implementation consists of a set of

abstract programs each of which defines an operation of Mn in terms

accesses to functions of machine Mn—l' A verification process can
then be used to ensure that the implementation is comnsistent with

the specification of both machines.

This stepwise process of machine specification,

implementation, and verification proceeds until, at some point, the

data abstractions of the lowest level machine can be easily
implemented on a specified ''target' machine, which may be the
data abstractions of some programming langpage, a low~level file
management system, or the operations of some appropriate hardware

configuration. This design process results in a structure con-

1,...M0

sisting of a hierarchy of abstract machines, or levels, Mn’Mn—

-21-

connected b set of n I .
y a s o programs I , In—l’ 1

in the hierarchy represents a complete "view" of the system at a

I.. Each machine Mi

Ii(ljifp) represents the implementation of that view upon the next

level machine &i—l'

We obser@e that the notion of levels of abstraction

translates to a natural interpretation within the context of decision
support systems. That is, we can expect that any integrated data
system will have a wide variety of users whose views of the system
and access requirements will be quite different. Through the hier-
archical design approach different levels of design may be constructed
to accommodate this bariety of views and access requirements. A
specific view representing one path of Figure 1 is shown in Figure 3.
It is observed that through hierarchical design,

many different users may be accommodated, and that reliability and

understandability of the system is enhanced. Furthermore, such a

system is machine and application independent and hence can evolve
with its environment. More detailed discussion of this model is
contained in Appendix 2.

iii.b) Design Structure Documentation

The role of specifications in the development of
large software systems is quite important. Specifications are used
not only as a means of communication between members of the design
team, but also serve to enhance the understandability of the system.
This is important both for users of the system and for future design
teams which must perform modifications.

In order to understand a system as a whole or
for explaining why a particular design was developed, there exists

the need to document the system design and the design process.

~22-

- e ~

EXTERNAL USER

M
n
| e
EXTERNAL USER O O
I
n
OO O~
3 . I
/ n-1

N
O
—

TARGET MACHINE Mo

Fig. 3. A hierarchy of formally specified machines

showing modularity. Levels may be constructed
to accommodate the different views required by 1

various users.
-23~

rr—““ . :) . e e 1

Such documentation would suppress details - concentrating rather on
the global properties of the system design and the design structure.

We have introduced a System Design Langauge (SDL)

which can be used to document the design process and record infor-
mation about the decision-making processes that occur during it.
The features of the SDL include methods for:

1. specifying the design alternatives at

each level,
2, specifying the hierarchical relationships
between system modules, and
3. specifying the structure of each system
level.
More detailed information of this language is contained in Appendix 2.

However, much more development is needed in order for the language

to accommodate the de-ign structure of concurrent, multiple user
programs.

iii.c) Hierarchical Performance Evaluation

The success or failure of any DSS, of course,
depends greatly upon the level of performance which the system
achieves during actual operation. Based upon the results of
current research efforts, however, it would seem that our approaches
to performance evaluation are somewhat less than satisfactory. This
section contains a very general description of a performance evalu-
ation technique which can be used with the hierarchical design
approach and which seems to have several advantages over current
performance evaluation procedures. This technique involves the

construction of a hierarchical performance evaluation model. The

purpose of this model is two-fold:

-24-

1. to provide the designer with feedback at

each step of the design process as to the
performance characteristics of his design,

2. to provide part of a basis for choosing

between alternative designs at each level.

In this approach the designer develops the system
design and evaluation model in parallel - the evaluation model being
constructed so that it represents the relevant performance aspects
of the current system design. The evaluation model provides con-
stant feedback to the deisgner at all levels of design as to the
performance characteristics of the system. Through constant inter-
action between designer, the system design, and the evaluation model,
it is hoped that a reasonably efficient system can be developed with
a minimum of backtracking and redesign.

Evaluation Model Structure

The structure of a hierarchical evaluation model
reflects that of the system design itself. Corresponding to the

ith level is a set of performance parameters, P,, which represents

i

the relevant performance aspects of the machine at each level.

Data structure parameters represent information about the abstract

data objects of the level (e.g., number of relations, average

number of records per block, etc.). While function parameters

characterize the operations of M, in terms of expected execution

i

speed and expected frequency or probability of access. Parameters

may also be classified as design parameters or scenario parameters.

Deisgn parameters are variables whose values may be changed by the
designer to determine the effects of various database designs and

implementations upon the performance of the system. Scenario

~25=

[ERp—

|
!

parameters, however, represent an expecteu usage of +he system in
terms of the operations and data objects of level i. Their values

are determined by the values of parameters of P according to a
i+l

performance parameter mapping set Ti+ Each mapping in this set

1
defines a performance parameter of Pi as a function of the parameters

of P A set of values for the scenario parameters of level i

i+1”’
is called a scenario for level 1i.
The values of scenario parameters of Pn are deter-

mined by an application scenario supplied as part of the high level

requirements specifications. The application scenario is a state-
ment of the expected use of the system in terms of the operations
and structures of machine Mn. The requirements specification also

contains a performance assertion which specifies the level of

performance expected from the system for the given scenario. This
performance assertion, by its structure, will indicate the measure
to be used in analyzing system performance. Various performance
measures might include:

1. mean response time for a given load,

2. expected total execution time for a specified

mix of operations,

3. total storage requirements, or

4., a suitably weighted mixture of the above.
The specification of this performance assertion enables the designer
to construct a cost function, Cn’ for Mn using the parameters of
Pn' This cost function may be used by the designer to estimate
the performance characteristics of Mn'

It should be noted that this model is only a proposal,

b" i;

"'WIIIIIIIIII-iiiiiiiiliiiiiiiiiiiii=iiiiEiIIIIIlIllIIIIllIlIIIIIII-IlllIlI----------—--.HH‘

experiments are needed to evaluate the adequacy of this model,
particularly, in the multiple user environment.

iv) Design of Concurrent Systems

The progress made so far is primarily in sequential systems

and must be extended to concurrent systems to be viable for DSS.
We discuss some of the issues that are peculiar to concurrent
systems here. In addition to the usual problems encountered in
sequential programs, the two most important problems are

(i) managing the interaction between processes;

(i1) supporting multiple views of the system (simultaneously)

for multiple users.

In recent years, a number of techniques have been advocated

for dealing with the design issues of concurrent systems. These

may be summarized as the following:

(1) Hierarchical Decomposition: This technique has been

SRS ST

used with great success for sequential programs. For
concurrent programs, it has so far been much less suc-
cessful, since the decomposition of a part needs to
take into account the interaction of that part with
several other parts.

We propose a methodology for decomposing a cluster
of functions simultaneoulsy, where the cluster members
greatly interact with each other, and interact only
slightly with functions outside the cluster.

(i1) Notion of information hiding: A way to enforce the
module independence is to place a discipline for limiting

the interactions among them. Furthermore, the modules

=27~

- Ty N L . Ve Ttedmantts s W *
' k)

. . .
P " - . . .o
adetinmy - 9 - . A s JPSIE SN) o J

do not exhibit their internal details, thus enforcing
i a discipline in their invokation. These ideas are

applicable to concurrent processes; we propose a view

s - S AT A e

of process interaction which takes this into account.
(1i1) Enforcement of Coordination: Coordination of the inter~
actions among processes has been studied at great depth,
since the pioneering work by Dijkstra. Onizboperating
Sequential Processes [Dijkstra, 1968], solutions using
P,V semaphores dealt with machine level concepts.
! Ultimately synchronizing mechanisms have to rely on
such low level concepts for their implementationms.
However, it is counterproductive to study a complicated

system synchronization problem in terms of these

el

primitives. Many different high level constructs have

been proposed for synchronization; each of these can be

viewed as a means of event driven coordination.

. "Demons’’ have been used in A.I. work to trigger
processes whenever an associated condition arises. Thus,
some processes are driven by events rather than through 3
explicit invocations. Current attempt is to implement
demons efficiently.

Another method of synchronization is through explicit
transfer of messages between processes. It is usually
implemented through a central "post office" with "mail
boxes" which actually are message buffers. This method
has been found to be useful in communicating with processes

whose identities are known to the communicating process.

-28-

p T

o

-y oman
” = —-‘~

-

\

~

MESSAGE

f
PROCESS

PROCESS

A notion of "monitor" has been advocated by Brinch-Hansen [1973]
and Hoare [1974]. Monitors are attached to shared global data, through
which procesgses may interact. Monitors enforce mutual exclusfon in
access to shared data. They also implement a scheduling policy for
access to that data (first come, first serve, for instance). Thus,
the monitor acts as a central scheduler for access to the data.

For performance, as well as the information hiding point of
view, the following process interaction figure illustrates a number

of ideas related to process coordination ideas:

SCHEDULER
SHARED DATA

SCHEDULER

SHARED DATA

Processes interact explicitly with messages sent through
implicitly shared data. The process scheduler 1is transparent both
to the process and to the data. A process is not aware of other
processes when accessing shared data. Hence, it may be designed
and verified as a sequential program, given only the semantics of
cperations on data.

Similarly, the data object is not aware of multiple simultaneous

accesses to it. Hence, it may be designed and verified independent

of the invokation sequence.

The scheduler handles the various aspects related to process

synchronization in accessing shared data. Each request for access

to a shared data is routed to the proper scheduler who decides
whether to grant access or not. If a process is granted access to
shared data, it returns to the scheduler on completion. If a
process is denied access to shared data, the scheduler may put the
process in a wait sequence. The scheduler, in fact, implements the
scheduling policy. It may grant multiple processes to access the
same data simultaneously (as in the reader/writer problem). It
may furthermore enforce security constraints. 1
This decomposition of the problem into its three essential i

components results in a decomposition in design and verification.

Essentially different properties may be proven corresponding to
each part.
(1) Process: Correctness of computation. This may use
traditional techniques in program verification.
(ii1) Scheduler: Absence of deadlock; fair scheduling;
absence of indefinite postponement of processes;

correctness of access sequences to data,

-30-

(1i1) Data: Correctness of implementation; integrity. Data
verification techniques for sequential programs are
applicable here.

An open problem is how to partition data base so that different
schedulers are assigned to different portions of the data base while
activities are still coordinated.

We propose to study the verification issues in the scheduler,
particularly the problem of verifying each property independently.
The basic idea is to verify each property based on certain axioms
so that the verification of another property does not nullify the
axioms. A formalism for studying such a partitioned environment

has been developed and is discussed in detail in Appendix 4.

-31-

i r———y o e -

v)

Data Base Design

Data bases form an integral part of any DSS. However, the
systematic design of data bases has eluded researchers in this area.
In this section, we shall describe how automatic theorem proving can
be used in data base design, and how system design methodology might
be applied to data base design.

We are concerned with a data base system which consists of a
very large memory and mechanisms for processing ana answering
queries. Also mechanism should be available for processing and
storing information in the memory.

Some queries would require the finding of one or more items in
the memory on the basis of a given KEY, while others would require
calculations and inference on the information im memory.

We envision a hierarchical system whereby (in some cases) a query

causes the fetching of selected items from the large memory, and

putting them into an auxiliary memory (e.g., high speed core) for
further processing in order to answer the query. For example, we
might fetch a part of a semantic net from the large memory, and
bring it into auxiliary memory for further processing.

The fetching operation itself may require "intelligent"
mechanisms, such as simple inferencing (e.g., and-gates, or-gates,
matching, table lookup, etc.), calculations (counting, averaging,
weighted sums, etc.), and various other methods.

Also, within the auxiliary memory, more complex mechanisms would
be used to complete the answer to the query. Since the amount of
material being processed in the auxiliary memory is drastically
reduced (from the amount in the large memory) we could afford to

employ much more sophisticated inferencing programs and calculations.

-32-

/(- . . S P RS,

The large memory might be ‘''distributed" over a large number of
sites, with different formats for data in each site, so the
hierarchical system might be required to employ different local
mechanisms for different sites. And these might be more than two
levels in the hierarchy, thereby processing a query in a number of
stages.

The large memory might employ new and/or novel concepts in
hardware design, including parallel searching ability, content
addressability, and ability to do minimal inferences and calculations.
The design and implementation of these concepts should be correlated
closely with the design of the overall system.

v.a) Automatic Theorem Proving as an aid to Data Base Design

and use.

It is highly desirable to have data base systems
which can give answers which are not explicitly stored in their
memory. For example, a data base which contained only the two
entries (A is an ancestor of B) and (B is an ancestor of C), should
be able to answer 'yes" to the question: (A is an ancestor of C),
even though that entry is not explicitly stored in the data base,
(provided that it was given an additional inference rule on the
transitivity of "ancestor-of').

Much more complicated examples than this can be
handled using inferencing mechanisms, but the problem gets more
difficult as the size of the data base memory and the complexity
(or depth) of the inference is increased. It depends of course on
how the entries are stored (as relations, semantic nets, etc.) and
what inferencing mechanisms are used. But it is clear that automatic
theorem proving (ATP) plays a central role here. It is not that we

can use our existing provers as off the shelf ftems to be "plugged"

-33-

into this new application, but rather we expect to use the concepts
and experience with provers. This situation is similar to that of
Program Verification where existing theorem proving programs were
heavily modified before they were inserted as modules in several
program verification systems.

A good deal of research has already been conducted
on inferential data bases. For example, the rather large effort in
natural language understanding [Chester & Simmons, 1977] falls in the
category as well as many others. Some of these workers have had con-
siderable experience in automatic theorem proving. But, their efforts
have left much left to do, especially for large scale systems. Also,
it is important that in designing and building new large data base
systems (or in developing general procedures for large data base
design), that inferencing mechanisms properly interface with the
rest of the system. It is important that ATP people work as part
of the larger team.

As mentioned earlier, the inferencing mechanisms
might be minimal at the fetching point in the large memory. It
would probably not be feasible to carry out there more than simple
and-or gates, and matches. A possibility would be to retrieve a
subset of the data base which is clearly relevant, and to perform
inferences and calculations on it in the fast auxiliary memory.
Such an interaction might require several! references to the large
memory, when and if the processing uncovered the need for further

data from the large memory.

Even in the fast auxiliary memory we do not expect

-34-

¢
:
f
3
¥

bt

r"——___'—__ﬁ‘{ —

the inferencing to be very deep (like, for example, the proving
of a difficult mathematical theorem).

A more detailed explanation of ATP in data base

design is provided in Appendix 5.

v.b) Hierarchical Design of Data Bases

Because of the dynamic environment faced by DSS,
the data bases supporting a DSS must be able to adapt frequent
changes without extensive reorganization. The top-down system
design methodology can be applied in the design of data bases to
improve their adaptability. The data bases designed with such
methodology will also provide automatic linkages between decision
models and have self-organizing capabilities.

The data base design process starts with a high level
description of the universe of discourse (UOD) - the part of reality

that is of interest to the users. A top level data base schema is

just designed to represent this high level abstraction of data. Then

the stepwise refinement process begins; at each step of refinement,

a new data base schema is formed with more details of the UOD and/or
more details of how the data base is actually stored. A hierarchy of
data base schemata is thus generated. The schema at the lowest level
of the hierarchy contains the storage structure of the whole data base.
By using this approach, related data can be "clustered" together and
small changes of the environment will only induce small changes in

the data base.

Note that in the top-down data base design process,
there is no distinction between 'logical data base design' and

"physical data base design''. Traditionally, "logical designs" only

-35-

consider the user convenlence and data semantics in constructing data
base schemata; the 'physical designs" only consider the efficiency
factors in designing storage structures. However, the convenience
factors and efficiency factors should not be considered separately

as they can influence each other. Our top-down methodology will
design data bases by evaluating different factors in their order of

importance without a rigid separation between 'logical" and "physical"
factors. The data bases thus designed should have a better overall
performance than those designed using traditional methods.

When the details of the UOD are added to a data base
schema, some data abstraction techniques (such as the ones developed
by Smith and Smith []) can be used as a guide for refinement. We
will develop more "abstraction operators' as the two operators
developed in [], aggregation and generalization, are not sufficient

for the construction of the schema hierarchy. For example, at one

level the schema may contain a field total sale per year, and at a

lower level the other schema may contain the field total sale per

month; the "abstraction operator" we need in this case is a summation
operator. This concept of "abstraction operator' can be generalized
to contain a whole decision model: the schema in a higher level
contains the output of a decision model which uses the data in a
lower level schema as its input. The schema hierarchy constructed

by using such operators can provide each decision mcdel the required
data and can support automatic linkage between different decision
models. A strategic model (e.g., a cooporation model) may need some
data from the outputs of different tactical models (e.g., financial
planning models) or operational models (e.g., payroll model and

marketing model). Upon the activation of the strategic model, the

- Y

data base system can automatically activate the tactical and operational
models that are needed. Sprague [] noted that the successfulness
of a DSS largely depends on the system's ability to link different
decision models together. Our design methodology provides a solution
to the linkage problem.

The characteristics of the multi-level virtual machines
(fig. 2) designed with top-down DBMS design methodology can also be
utilized in the data base design process. 1f a data base schema is
based on a level of virtual machines in the system hierarchy, the
performance of the schema can be predicted by using the performance
evaluation functions developed for the virtual machines. Such per-
formance evaluation can also be applied to guide the self-organizing
activities of the data base, the data base schemata can evolve with
changing environment in order to optimize the performance.

v.c) Design of distributed data base which uses summary

information
The design problem is related to responses based on

incomplete or partial information. An example of a flight reservation

will illustrate the idea. Consider a primary data base (central computer)

which has (all) the information regarding a flight booking. There are
several secondaries (mini-computers with slight memory) which can be
used to make a reservation. Each secondary holds 1 bit of information,
which denotes whether the number of vacant seats in the flight exceeds
10% of the flight capacity. The secondary uses the following logic
to book a seat or deny a request,

If the bit shows availability of vacant seats (more
than 107% of flight capacity) then a seat is booked on request and the

primary i1s informed of the booking. Otherwise, the request is denied.

an. 0y

VR T i e e

RO

o

vi)

Periodically, the secondary might receive messages from primary to
turn the bit off (vacant seats less than 107 of flight capacity due
to a number of bookings) or on (following cancellations).

Primary uses the information received from the secon~
daries to decide whether the bit should be off or on; it transmits any
change in the status of the bit to all the secondaries.

The point of this example was to show that rapid
response to queries can be provided based on incomplete information.
However, the danger in the above example is that of overbooking (too
many secondaries book simultaneously) and underbooking (all secondaries
were instructed to cease booking while there were a number of vacant
seats). It seems that this method can be used to keep summary

information to serve several sites most of the time; however, some

time (with low probability) all the current information may be needed.
We propose to study the use of summary information in several real life
problems and to generalize the idea. Furthermore, the effectiveness of
such strategies have to be studied with probabilities of erroneous
response and probability of querying the primary data base.
Tools

A set of software tools must be developed along with the methodology
in our project to aid the construction of decision support systems. We
should include four classes of tools: languages for communication,

modeling system for testing out our ideas, reasoning systems for exploring

the consequences of our ideas at a general level, and knowledge systems

for gaining from our past experiences. It is envisioned that such an

integrated set of tools is itself a decision support system. With such

tools, a designer can tinker with his designs by executing and testing

-38-

—————ne o e

; 1)

ii)

iii)

iv)

specifications, or ask the system questions such as, "I intend to make
such a change to my design, what will the consequences be, and why?"

We will explain in the following an initial set of such tools.

a) Languages

A requirements language. This shculd be a restricted form of
English and/or graphics for stating the problem initially. It
is characterized by its vagueness and high level of abstraction.
A specifications language. This should be a formal, non-
procedural language for stating the problem after it has been
clarified. A specification in this language fixes a particular
representation of the problem so that finitary procedures can
be applied to obtain a solution. This language is considerably
less vague than the previous language. It may even be precise.
A computer executable specification language is developed, a
sample is given in Appendix 3.

A programmming language. This is the procedural language that
we use to state our proposed solutions. It may be at the level
of a modern computer language like Pascal, or it might be
higher.

A meta-language. This is the language that we use to talk to
each other (and to the computer) about our engineering efforts,
that is, about requirements, specifications, programs, assertions,
documentation, models, simulations, testing, debugging, problem
solving, reporting, etc. This may just be English, but we should
try to formalize at least some of it so that we can get help

from the computer.

We may in fact have several examples of each of the above languages to

serve special purposes. In any case, each language consists of a

-39-

damdaates

-— "

vocabulary of concepts that are ''matural’ for the intended application;
this means that they are as close to common sense concepts as possible.

b) Modeling systems

i) An interpreter and/or compiler for the specifications and
programming languages. This allows us to test our evolving
software to see whether it does what we expect. This kind of
testing will catch many of the simpler errors and will help us
to see whether we really want the properties given in the
requirements or specifications. We need an interpreter for the
specifications language because a precise statement of the
problem is in a sense a high level solution to the vague problem
posed by the requirements.

ii) Special simulation packages. These are used to model only part
of the behavior of a system. Queuing models, for example,

simulate the interactions between processes while ignoring most

of the details of the processes. We may have a different

package for each major performance parameter that interests us.
iii) Hierarchical performance evaluator. This will be the tool to

support the hierarchical performance modeling discussed in

ifi.c). We envision that such a tool has some gross similarity

to current program verifiers in that inference capability is

needed, and hierarchical performance requirements (analogous

to the verification conditions) will need to be generated.

The development of this tool will be a major undertaking.

¢) Reasoning Systems

i) An interacting theorem prover. It can :e used to verify con-
jectures about the developing software. The most important

kind of conjecture will probably be that one system design is

ii)

iii)

iv)

v)

a refinement of another design or of the specifications.

An inference engine. This is different from a theorem prover

in that it is not given a conjecture to prove. Instead it
derives "interesting" generalizations about a program or pair

of programs. It will need some guidance to know what "interesting"
means. This is the system that has the ability to discover
important facts as an active agent for the engineering team.

It can also be used to determine the conequences of a proposed
program modification will be.

A monitor. This is the agent that uses the inference engine
(and perhaps the theorem prover) to detect violations of

project standards and undesirable interactions between different
programs. It can inform a designer that what he is doing con-
flicts with what someone else has done, or that someone else
has already done something similar.

A symbolic debugging aid. There will be debugging aids for

use with the modeling systems, but this aid helps the designer
locate a bug by looking at the code with him. It will make
heavy use of the theorem prover and inference engine.

A code analysis system. This is mcre general than the debugger
in that it helps the designer find the relevant code that pro-

duced some effect.

d) Knowledge Systems

1)

An advice-giver. This can help the designer clarify his problem.
It is a data base of knowledge abcut high level concepts,
algorithms, heuristics for solving special problems and for
general problem solving, and the technical literature. It will
be especially helpful when the designer is trying to clarify

his problem.
~41-

e)

i1) A project library. Here is where all written material con-
cerning the design effort is stored and made readily accessible.
It will have an extensive association network so that specific
information can be found with a minimum of keyword guessing.
It will thus give some question answering ability like the
advice-giver.

iii) A knowledge acquisition system. This is the system that we
need to put all the detailed knowledge into the other systems.
Instead of one system it might be a separate component of each
of the other systems. The success of the overall system depends
directly on the ease with which its subsystems can be brought
up to a satisfactory level of performance.

Computer Architecture for Decision Support Systems

The DSS computer architecture will use recent hardware advances
(especially LSI) technology to facilitate the development of the very
large distributed and intelligent data base management system. We
sketch here architectural features of a planned system and some
problems for architecture research and development.

Three major computing systems are to be accommodated. Firstly,
users interface with the data base system through a network of
intelligent terminals. Secondly, intelligent discs are located at
various nodes in this network and are powerful enough to search the
data where it is stored to avoild shipping large quantities of data
through the network. Thirdly, an array computer will use parallelism
to extend the analytical capacity of artificially intelligent soft-
ware. We submit that these three major systems have to be accommodated
because none of them alone, nor any pair of them, are adequate to

support the envisioned software.

-42-

In the following paragraph, we shall give a brief description of
the intelligent Disc Architecture since it is used to support the
important conceptual tools by providing both content- and context-
addressability. It also can be designed to support distributed
queries in the network and to support deep theorem proving in the
array computer. Other system architecture as well as details of
how an intelligent disc can achieve content and context searching
is described in Appendix 6.

i) Intelligent Disc Architecture

From our earlier work on the CASSM system at the University
of Florida and from related work on the RAP system at the
University of Toronto, we have established techniques which
will efficiently store relational data bases and semantic net-
works on a disc. The logic associated with the disc makes it
sufficiently intelligent to resolve almost all typical relational
queries and sufficiently intelligent to greatly assist extracting
useful data from a semantic network for artificial intelligence
programs.

The disc architecture will consist of multiple moving head
discs (we are looking at IBM 3330 or equivalent stores of about
109 bits per removable disc pack) in which all heads are on a

~ common frame, and there is one head on each disc surface. By
moving the frame, the heads are located over a given '"cylinder”.
One or more such discs will be operated together so that their
"eylinders" form a larger cylinder; the data on this larger
cylinder we call a file. Each head will have a "microprocessor"
similar in complexity to current popular microprocessors but

having quite different organization and instruction set. It

43

il 2 el T G

B

will be attractive to put each "microprocessor" in an LSI chip.
The disc track and "microprocessor” we call here a cell. The
logic looks like a chain of identical cells. In one revolution
of the discs, an "instruction" is executed on the entire file.
The file consists of records of a variable number of words, and
the wordé are fixed length. Records correspond to tuples in

the relational data base system and to nodes in semantic networks.
The first word of each record stores a bit stack. Other words
;ppear to store domain names and items in the tuple, or arcs

incident from the node in the network. A typical "instruction"

pushes a bit in the bit stack of every record in the file, which
is the result of a search for a domain name and item in the tuple,
or the result of transfering from one node to another node through
an arc in the network. Alternatively, one can AND or OR the

result of the search or transfer onto the top bit of the bit

stack in each record. These operations are accomplished by
means of a one bit wide random access memory, with as many bits
as there are records in a cell, in each cell. Significantly, i

as the data base size increases, it is possible to add more discs,

so _that retrieval time is relatively independent of the size of

1 the data base. (If tertiary memory is used, as will be necessary
15

for 1012-10 bit data bases, this feature will be harder to
maintain but is still possible). Furthermore, both tuples of
relational data bases and nodes of semantic networks can be

efficiently stored in the same record, and that record can be

accessed by two users who are working in either semantic net-

works or relations.

~44-

ii) Problems for Research and Develququ

Since the intelligent disc is common to studies in networks,
relational queries and artificial intelligence it is necessary
to build a prototype disc system and make it available to the
other researchers. Since research on the architecture of an

intelligent disc has been essentially completed in the design

of the CASSM machine, this aspect of the work is more like

development of a tool based on that research. However, the
added requirements imposed by network and artificial intelli-
gence pose some new research problems. Significant among

these are the techniques to lock out records on the file and to
regenerate a query from one file that is to be sent to another
file.

In the network architecture we expect the usual problems
of deadlock, routing, and protection. Considerable research
has to be carried out to evaluate how to take advantage of
intelligent discs that permit locking of records. Performance
studies will be required to determine the effect of strategies
to search multiple files on traffic through the network.

In the array architecture, further studies are indicated to
determine if cannonical forms can be used to make vector
operations out of operations like COND (from LISP). Studies of
the utilization of memory by concurrent vector techniques will
indicate *ow successful the cannonical forms may be.

Other research questions interrelate with other areas and

will be described in other sectionms,

Reliability Issues in the Design of Distributed Data Bases

A distributed data base has a number of different specifications
associated with it. Broadly, we may divide them into two categories:
those dealing with the user and those pertaining to the functioning
of the system.

The specifications associated with uses include (a) specification
of query language through which the user communicates with the system,
(b) specification of the (user) view of data that the system supports,
(c) response time and other performance specifications. System
specifications may include those aspects dealing with integrity,
consistency, absence of deadlock, specification of a fair scheduling
policy, etc.

A number of new problems arise in dealing with system function
specification. In particular, a language formalizing such speci-
fications is a must; however, very little work has been done in
formal specifications of properties of concurrent system. The
problem can be explained informally in terms of a simple reader-
writer problem. Readers access a data base in query mode; writers
perform updates on the data base. For performance reasons, it is
desired that

(i) a number of readers may simultaneously access the data

base.
In order to avoild unpredictable modification, it is required that
(1i1i) no more than one wirter may access the data base at any
time. Furthermore, no reader may access the data base if

a writer has been granted access,

i Y . ca . PN N LY.

—

A fair scheduling policy must also ensure that no process is inde- 3
finitely postponed. Hence, it is required that
(111) no reader is granted access to data base if there is a
writer previously waiting. Similarly, no writer is
granted access if there is a reader previously waiting
before it.

Finally,

(iv) a reader or a writer may be granted access if no other
process has been currently granted access to the data base.
A reader must be granted access if only readers are currently

accessing data base and no writer is waiting.

This problem, though simple in nature, results in a number of
distinct solutions of varying complexity. In order to verify that
a solution meets the requirements, we need to state the requirements

in a formal manner, independent of any specific solution. This ;

small problem highlights some of the difficulties. For larger
problems, specifications are required not only for verification, but 1

also to check for the consistency of the requirements.

A number of other forms of assertions, to be called "soft

assertions" [Saltzer, 1977], seem to arise in distributed data base
gpecifications. Soft assertions involve the notion of time and
probabilities. While probabilistic assertions have been found

useful in other areas (operating systems in particular, where one

may assert that the probability of system deadlock is less than

10-5, etc.), "time" has not been used as a parameter in specifications
of systems. The reason for this is simple: normally we deal with
algorithms or processes which do not exist for extended periods of

time or which model a part of a real system evolving in time. Data

-47-

bases exist for years and hence must include “time' as an improtant
parameter in the system specifications.
The time dependent assertions can have a variety of types, as

illustrated below:

(1) Copy at a location A is consistent with copy at another

location B, to within one day.

(ii) Every March 31, every copy is current.
(i1i) On the 1lst of every month, automatic transfer of a certain
amount takes place from one account to another.

At present, no formal technique exists for succinctly stating

such assertions or verifying a system with respect to these assertions.

Probabilistic assertions deal with probabilities of events. An
event, such as total system deadlock, may not be preventable in any
reasonable manner. However, it may be asserted that the probability
of such an event is negligibly small. A number of efficient solutions
to several system problems may be designed, if one is willing to risk
an undesirable event; however, it must then be shown that the event
is highly unlikely. For instance, an airline might follow a booking
policy where the probability of overbooking by x seats does not exceed
10-(x+1). Probabilistic assertions may also relate the software's
ability to deal with physical component failures, given the proba-
bility of such a failure.

A number of research issues arise in dealing with such
assertions.

(1) formal specification technique for soft assertions,

(1i) identification of reasonable (tractable) classes of

assertions which are pertinent to distributed data bases,

-48-

\
. .
e
.‘--un-nni-u-u-iu---hl—--mn:— v
— : . . C
it) e i : IV SN P

R e Y

(11i) design and verification of system based on such assertions.
A system constraint of special importance is that of integrity.
It is a constraint either dictated by the application or enforced by

the data base administrator. An integrity constraint is an assertion

about the data base which holds following every transaction. Hence, it

must be verified that every transaction maintains integrity. An example
is a constraint such as "no employee earns more than his manager', or

"no manager manages less than 3 persons or more than 20 persons', etc.
However, it is expensive to verify through run time checks that integrity
is preserved. Fortunately, we have found that most of the integrity
constraints deal with the structure of the data rather than the value

of the data. For instance, social security number is an integer with

9 digits; no employee belongs to more than one department, etc. Such
constraints are routinely handled by compilers through type checking.

This idea can be exploited by preprocessing the transaction structure
to determine whether it would violate the structure constraints. However,
most run time checks are usually limited to a single tuple or a small
number of them. ("Salary of no employee below the rank of a manager
may exceed $20,000-" can be checked whenever a tuple is updated). This
type of integrity constraint does not require us to go over the entire
data base.

Another commonly occurring form of constraint dealing with an

entire data base can be checked incrementally. For instance, a

constraint might require that the average salaries for males and
females must be within 10% of each other. Normally, it would be
required to verify this following addition of every new employee and
change in salary of any employee. This constraint involves the entire

data base. However, the relevant quantities can be computedincrementally,

sy }

if we keep track of total number of male and female employees and their
total respective salaries.

Most integrity constraints dealing with an entire data base exhibit
this property of incremental computation.

A problem studied by Eswaran, et al, [1976] is the sequence in which
multiple transactions may interact to destroy integrity, though each
transaction preserves integrity when executed above. They showed that
integrity is preserved if and only if every transaction locks all pieces

of data used by it prior to any unlock. This has the interesting property

that a system wide requirement is unnecessary, so long as every transaction

meets this requirement. However, the proposed method also implies a
specific order for locking data items in order to avoid potential dead-
locks. This, in turn, implies that dynamic decisions which items should
be locked during a transaction, are dangerous. Furthermore, their
solution is based around a central scheduler which grants (or denies)
locking privilieges based on the entries in a lock table, which shows
the items currently under lock. Several problems arise in connection
with multiple copies of the same data base, location of tha lock table
and recovery problems when the scheduler (or the lock table) site fails.
A number of issues arise in handling mult.ple copies. The central

problem is that of recovery from a faulty transaction or hardware failure.
In the latter case, it may be necessary to suspend all operat’ons on all
copies; otherwise, some queries may receive incorrect responses. A
statistical approach is needed. Certain other problems dealing with
multiple copies are the following:

(1) How consistent do the copies need to be? Absolutely consistent,

within 1 day of each other, etc.?
(11) Given sufficient time and no further updates, do all the copies

converge to the same state?

=50~

(1ii) How can the lock tables and file directories be maintained
absolutely consistently?

(iv) How are updates broadcast so that older updates do not over-
write the newer updates? This problem has been addressed by
Bunch [1977] with time-stamping and Allsberg [1977], for
inventory type data bases.

A further area of research is transaction preprocessing. If the
transaction is not dynamic, i.e., decisions about data accessing etc.,
are not made based on the outcomes of responses in the same transaction,
then it is possible to preprocess the transaction to guarantee certain
properties. As we have mentioned earlier, this can be used to eliminate
checks on the resulting data base for integrity constraints. It can be

used to guarantee legality and authorization of access.

r————--‘:—--------IlIIIllllllllllllllllllllllllll=" ; - s o ,‘ﬂ1

REFERENCES

1. Ballantyne, A.M. and Bledsoe, W.W., (1977), "Automatic Proofs of Theorems
in Analysis Using Non-Standard Techniques"', J.ACM, vol. 24, pp. 353-374.

2. Baker, J. and Yeh, R.T., (1977), "A Hierarchical Design Methodology for
Data Base System'', TR-70, Dept. of Computer Sciences, University of Texas
at Austin, Austin, Texas.

3. Belady, L.A. and Lehman, M.M., (1976), "A Model of Large Program Development",
IBM Systems Journal, vol. 15, no. 3, pp. 225-251.

4. Belady, L.A. and Merlin, P.M., (1977), "Evolving Parts and Relations - A
Model of System Families', IBM Research Reports RC6677.

5. Berild, S. and Nachmens, Sam,(1977), 'CS4-A Tool For Database Design by
InFOLOGICAL SIMULATION", Proc. 3rd. Int. Conf. on Very Large Data Bases,
Tokyo, Japan, pp. 85-94.

6. Blagen, M. and Eswaren, K., (1976), "A Comparison of Four Methods for the
| Evaluation of Queries in a Relational Data Base System', IBM Research Report
E RJ1726, IBM Research Center, San Jose, Calif.

7. Brinch-Hansen, P., (1973), "Concurrent Programming Concepts', ACM Computing
Surveys, vol. 4, no. 4, pp. 223-245.

8. Bledsoe, W.W., (1971), "Splitting and Reduction Heuristics in Automatic
Theorem Proving", A.I. Jour., 2, pp. 55-71.

9. Bledsoe, W.W., (1975), "Non-Resolution Theorem Proving', Automatic Theorem
Proving Project Report #29, Department of Mathematics, University of Texae«
at Austin, Austin, Texas.

10. Bledsoe, W.W., "A Maximal Method for Set Variables in Automatic Theorem
Proving", University of Texas Math Department Memo ATP~33A, July, 1977.
To be presented at IJCAI-77, MIT, Aug., 1977.

11. Bledsoe, W.W., Boyer, Robert S., and Henneman, William H., (1972), "Computer
Proofs of Limits Theorems', A.I. Jour., 3, pp. 27-60.

12. Bledsoe, W.W. and Bruell, P., "A Man-Machine Theorem-Proving System",
A.I. Jour., 5, pp. 51-72.

13. Bledsoe, W.W. and Tyson, Mabry, (1975), "The UT Interactive Theorem Prover",
University of Texas at Austin, Math Department Memo ATP-17.

l4. Bledsoe, W.W. and Tyson, Mabry, "Typing and Proof by Cases in Program
Verification", Machine Intelligence 8, Donald Michie and E.W. Elcock (eds.),
Ellis Horwood Limited, Chichester, pp. 30-51.

15. Carlson, W., (1976), "Software Research in the Department of Defense",
Proc. 2nd Int. Conf. Soft. Eng., San Francisco, pp. 379-382.

-52~

—— e P

16. Chester, D. and Simmoms, R.F., (1977), "Influences in Quantified Semantic
Networks", Proc. 4th Int. Conf. on Artificial Intelligence, Boston.

17. Chester, D. and Yeh, R.T., (1977), "Software Development by Module Evaluation",
Proc. Int. Conf. on Software and Applications, Chicago.

18. Codd, E.G., (1970), "A Relational Model of Data Fpr Large Shared Data Banks",
CACM, vol. 13, no. 6, pp. 377-387. :

19. Dpahl, 0-J., Dijkstra, E.W. and Hoare, C.A.R,, (1972), Structured Programming,
Academic Press, New York, N.Y.

20. Davis, R., Buchanan, B. and Shortliffe, E., (1977), "Production Rules as a
Representation for a Knowledge-Based Consultation Program', Artificial

Intelligence 8, pp. 15-45.

21. DeRemer, F. and Kron, H.H., (1975), "Programming~in-the-Large Versus Pro-
gramming-in-the-Small", IEEE Trans. Soft. Eng., vol. SE-~2, no. 2, pp. 87-96.

22. Dijkstra, E.W., (1968), "Cooperating Sequential Processes'", Programming
Languages, F. Gennys (ed.), Acadeqic Press, New York, N.Y.

23. Dijkstra, E.W., (1971), "Hierarchical Ordering of Sequential Processes",
Acta Informatica, vol. 1, no. 2, pp. 115-138.

24, Dolotta, T.A. and Mashey, J.R., (1976), "An Introduction to the Programmer's
Workbench", Proc. 2nd Int. Conf. on Soft. Eng., San Francisco, pp. 164-168.

25. Donovan, J., (1976), "Data Base System Approach to Management Decision
Support", ACM TODS.

26. Donovan, J.J. and Madnick, S.E., (1977), "Institutional and AD HOC DSS and
Their Effective Use", ACM SIG DG.

27. Goodenough, J.B., (1975), "Exception Handling: Issues and a Proposed
Notation", CACM, vol. 18, no. 12, pp. 683-696.

28. Hoare, C.A.R., (1970), "An Axiomatic Approach to Computer Programming",
CACM, vol. 12, no. 5, pp. 76-80,83.

29. Hoare, C.A.R., (1974), "Monitors: An Operating System Structuring Concept",
CACM, vol. 17, no. 10, pp. 549-557.

30. Lipovski, J.G., and Su, S.Y.W., On Non-Numeric Architecture, Dept. of
Electrical Engineering, University of Florida

31. Madnick, S.E. and Alsop, J.W., (1969), "A Modular Approach to File System
Design', Proc. AFIPS, vol. 34, pp. 1-12.

32. Misuri, G., (1976), "Survey of Existing Programming Aids", ACM SIGPLAN
Notices, pp. 38-41.

=53~

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43,

44,

45.

46,

47.

48.

49.

Moriconi, Mark, "An Interactive System for Incremental Program Design and
Verification",.

Parnas, D.L., (1972), "A Technique for Software Module Specification with
Examples", CACM, vol. 15, no. 5, pp. 330-336.

Parnas, D.L., (1976a), "On the Criteria to Be Used in Decomposing Systems
Into Modules", CACM, vol. 15, no. 12, pp. 1053-1058.

Parnas, D.L., (1976b), "On a Buzzword: Hierarchical Structures'", IFIP Proc.
Randolph, J.A., (1972), "A Production Implementation of an Associative Array

Processor: STARAN." Proc. AFIPS 1972 Fall Int. Computer Conf., vol. 41,
pt. 1, pp. 229-241.

Robinson, L. and Levitt, K.N., (1977), "Proof Techniques for Hierarchically
Structured Programs', to appear -~ Current Trends in Programming Methodology,
Vol. 2, R.T. Yeh (ed.), Prentice-Hall, Englewood Cliffs, N.J.

Sandewall, E., (1971), "Formal Methods in the Design of Question-Answering
Systems', Artificial Intelligence, vol. 2, no. 2.

Senko, M.W., (1976), “"DIAM II and Levels of Abstraction", Proc. Conf. on DATA:

Abstraction, Definition and Structure, pp. 121~140.

Simon, H.A., (1973), "The Structure of 111 Structured Programs", Artificial
Intelligence 4, pp. 181-201.

Simmons, R.F., (1973), "Semantic Networks: Their Computation and Use for
Understanding English Sentences', Computer Models of Thought and Languages,
(Schank & Colby, eds.), pp. 63-113.

Smith, J. and Chang, P., (1976), Optimizing the Performance of a Relational
Algebra Interface", CACM.

Smith, J. and Smith, D., (1973), "Data Abstraction: Aggregation and General-
ization", ACM TODS

Sprague, R. and Watson, H., (1975), "MIS Concepts", Journal of Systems
Management.

Sungren, B., (1976), &Data Base Theory/& , Patrocelle-Charter.

Sussman, G., Winograd, T., and Charniak, E., (1970), "Micro-Planner
Reference Manual', AI. Memo 203, Artificial Intelligence Laboratory, MIT.

Weber, H., (1976), '"The D-graph Model of Large Shared Data Bases: A
Representation of Integrity Constraints and Views of Abstract Data Types'",
IBM TC (San Jose).

Wegbreit, B., (1976), "Verifying Program Performance', JACM, vol. 23, no. 4,
pp. 691-699.

54—

-~

rw R,)

50. Winston, P., (1977), Artificial Intelligence , Addison-Wesley, New York.

51. Yeh, R.T. (ed.), (1977), Current Trends in Programming Methodology: Vol. 1
Software Specification and Design, Prentice-Hall, Englewood Cliffs, N.J.

52. Yeh, R.T. (ed.), (1977), Current Trends in Programming Methodology: Vol. 2
Program Validation, Prentice-Hall, Englewood Cliffs, N.J.

53. Yeh, R.T., (1977), "Program Verification by Predicate Transformation",
Current Trends in Programming Methodology: Vol. 2, Program Validation,
Yeh (ed.), pp. 228-247, Prentice-Hall, Englewood Cliffs, N.J.

54. Yeh, R.T. and Baker, J.,(1977), "Towards a Design Methodology of DBMS: A

Software Engineering Approach", Proc. 3rd Int. Conf. on Very Large Data
Bases, Tokyo, Japan

APPENDIX 1 |

SEMANTIC REPRESENTATIONS
FOR AN INTEGRATED DATA SYSTEM

R. F. Simmons
I. Languages
Semantic Networks evolved primarily to represent the deep logical semantics
of natural language discourse. Consequently communication in English is the

raison d'etre of the system and we have previously described interpreters and

grammars that we have developed to translate sentences and queries in English

into the networks and from network structures back into English (see Simmons, 1977).
The language of semantic relations an& predicates evolved as a linear ex-

pression of the networks, and statements in it may be used as arguments of the

functions, ASSERT, QUERY and DELETE to communicate directly with the system.

This language is an alternate notation for predicate logic and it is fu-ly

quantified and includes logical functions -- AND, OR NOT, and IMPLIES -- and

can include general functions (see Simmons and Chester, 1977). !
The user may prefer for ¢ me purposes to use a simpler language of tuples. J
L

A predicate logic in this form was introduced to computation by F. Black (1964)

and has been further developed by Kowalski (1974). A simple assertion such as:

- "the pencil is in the desk", is represented in Xowalski's notatiom as: (IN PENCIL
DESK)+~. The transitivity of "in" is expressed as: (IN X Z)«(IN X Y) (IN Y Z),
i.e. if X is in Y and Y is in Z, then X is in Z, where X, Y, and Z are free
variables. The tuples to the left of the arrow are consequents, to the right k

are antecedents. A query has the form, «(IN PENCIL Y). Both Black and Kowalski 1

show that this is a complete logical system. This language translates easily

into semantic networks. An example will illustrate: 4

(IN PENCIL DESK)+ == (ASSERT(IN R1 PENCIL R2 DESK))]
(INX Z)«(INXY) (IN Y Z)=

(ASSERT(IN R1 X R2 Z ANTE ((IN R1 X R2 Y)(IN R1 Y R2 Z))))

«(IN PENCIL X) == (QUERY (IN Rl PENCIL R2 X))

e
Wanra'

Page 3

The logic of answering questions in semantic networks is similar to the logic
of Kowalski's system which he has shown is very powerful for solving problems
and even for evaluating programs.
Of primary interest to data management, special functions are introduced
for asserting, querying and deleting tables. ASSERTAB as exemplified in a
following section, takes a tablename, a list of headings, and a list of
tuples as arguments:
(ASSERTAB TABLE COURSE*TAB
FORM (COURSE STUDENTS)
DATA ((CS343 23)(CS8375 37)...(CS399 9)))
The result of ASSERTAB is to construct a network representing the table.
DELETAB is provided to delete all or parts of a table. Although the ordinary
ASSERT, DELETE and QUERY functions work on tables, a special quantified func-~

tion is provided in the following form:
(FOR QFY CLASS PARTITION OPERATION),
an example call might be:

(FOR SOME STUDENTS COURSE*TAB (IF (GR STUDENTS 5)
(PRINT COURSE STUDENTS)))
The operation can be any program in a language decided to be suitable for the
user. It is of particular importance that the operations include the capability

of constructing new tables, e.g.

(FOR SOME NAMES EMPLOYEE*TAB (IF (GR SALARY 20000)
(ASSERTAB NAME TEMP*TAB
FORM (NAME SALARY DEPT)
DATA (NAMES SALARY DEPT))))

M TN

rage &

This will construct the new table, TEMP*TAB seclecting NAMES, SALARY and DEPT A

rrom the old one when entries have a salary greater than 20000.
Additional functions ASSERTEXT, DELETEXT and KEY* are provided for intro-

ducing text to the semantic networks and for retrieving bestmatching strings

from it.

fage >

IT. Basic Structures

Semantic networks can be viewed as a representation that reduces all data

to sets of binary relations. A semantic network can be drawn as a directed
graph in which each arc represents a relation term and the two nodes* which
it connects are the arguments. Since a node can participate in many binary
relations, a node, its arcs and the nodes to which they directly connect it

comprise a set of binary relations. A simple example follows:

"Five students enrolled in CS381."

enroll student
“ N
SUP SUP
enro111 —A%Ty srypEnT1 —BR) 5

TH—-) cs381%1—F Y cs381

: The subscripted terms, e.g. enrolll, studentl, etc. can be seen as a special
encoding for instances of the concept to which they are in a SUP relation. The
arcs are relation names which in this example are derived from the names,

[Agent, Theme, Number and Superclass. Each arc is understood to have an inverse

as follows:

SUPerclass--INSTance

AGT--AGT*
TH~~- TH* i
NBR--NBR* i

. *In fact, in our implementations, an arc connects a node to a set of nodes, :
1 e.g. stately and graceful coconut palm is represented as

(PALM MOD 4 (STATELY GRACEFUL)). This proves most economical for representing '
tables and texts.

Page ¢

The unsubscripted concept is also in relation to other concepts; e.g. ENROLL
SUP JOIN, STUDENT SUP PERSON, CS381 SUP COURSE, etc., thus classifying the
vocabulary of the system.

The above graph can be represented also as triples which is an attractive

form at the machine implementation level.

(ENRCLL1 SUP ENROLL) (CS381* syUP CS381)
(ENROLL1 AGT STUDENT1) (CS381*%1 TH* ENROLL)
ENROLLL TH CS381%1) (5 NBR* STUDENT1)

(STUDENT1 SUP STUDENT)

(STUDENTL NBER 5)

(STUDENT1 AGT* ENROLL1)
The triples rfacilitate implementation in that they reduce any form of data to
a fixed dimension array. Their use of indirect reference is advantageous for
defining recursive and iterative inference procedures but results in signifi-
cant difficulties in terms of the number of auxiliary storage accesses that
they may imply.

Most of our work locally has been accomplished in a LISP 1.5 environment

in which the semantic networks are conveniently represented as property list
structures. A property list can be viewed as a node associat. .t of

pairs. The first member of a pair is the name of an arc or relation and the

second is the name of the node that it comnects. For the above graph or set
of triples a property list structure appears as follows: 1
(ENROLL1 SUP ENROLL AGT STUDENT1 TH CS381%*1)
(STUDENT1 SUP STUDENT AGT* ENROLL1 NBR 5)
(CS381%1 SUP CS381 TH* ENROLL1)
(ENROLL SUP JOIN INSTANS ENROLLL)

The LISP environment is additionally helpful in providing a transformation from

linear machine organization of memory to a logically organized memory in which

[the names of atoms and lists point to their addresses. This list
represents a difficult problem when auxiliary storage is required

f
[large data management system.
\

o’

organization

as in a

Page ¢

I11. Tuples and Tables

In ordinary conventions of mathematical notation a statement such as our
example, "Five students enrolled in CS$381", might be represented as the fol-

lowing data 2-tuple:

(Cs381 5).

The author of such a tuple would remember that he is talking about a course and

its enrollment of students. His understanding of the tuple can be represented

by a corresponding form 2-tuple, (COURSE STUDENTS). These two forms may be

combined into a semantic network representation: (COURSE 381 STUDENTS 5) thus

making explicit the form that is required to understand the original 2-tuple.
If he wishes to organize or present data for several courses, he may

construct a table such as the following:

TABLENAME COURSE*TAB
HEADINGS COURSE STUDENTS

cs381 5

DATA CS382 7

Alternatively, he can present the same. information in semantic network

form.

(COURSE*TAB INSTANS (COURSE*TAB1l, COURSE*TAB2)) r
; (COURSE*TAB1 SUP COURSE*TAB COURSE CS381 STUDENTS 5)

(COURSE*TAB2 SUP COURSE#TAB COURSE CS382 STUDENTS 7)

e, oy

Page Y

The tablename, COURSE#*TAB, is a partitioning of the semantic network that
organizes assertions about courses and students into a subnetwork that is
easily accessible by the name, COURSE#TAB. Additional specifications of the
xind of data in the partition can be associated with the tablename to
facilitate retrieval or to insure accuracy of its entries as in the following
example:
(COURSE*TAB ARCS (COURSE STUDENTS) ACCESS UNRESTRICTED

ENTRIES 2

COURSE NAME

STUDENTS (NBR LS 500))
So the node, COURSE*TAB specifies that its headings are COURSE and STUDENT,
its access is unrestricted, it has 2 entries, COURSE is a NAME and STUDENT a
NUMBER less than 500. The INSTANS arc as seen earlier indexes the entries.
Various ordering arcs can be provided to subset large tables into alphabetic
or numerical categories.

Interpreters for two forms of query can be provided. The first is the

standard form called a Case Relation query:
(QUERY (Y COURSE CS381 STUDENTS X))

where the argument of ASK is a partial specification of a case relation and

X is a variable that matches the value associated with the matching case
relation. The value returned by ASK is (COURSE*TAB1 COURSE CS381 STUDENTS 5).
The partial specification succeeds by finding the instances of CS381l and
discovering if any have the arc, STUDENTS. If we knew that courses were par-

titioned in COURSE*TAB, we might have asked:
(QUERY (COURSE*TAB COURSE CS381 STUDENTS X))

and retrieved the same answer by examining the instances of COURSE*TAB. The

Page 10
value returned in this case would be (COURSE*TABl COURSE CS381 STUDENTS 5).
The second gencral type of query is a quantified form, similar to formal

data management languages;
(FOR QFY CLASS PARTITION OPERATION)

FOR establishes an iteration where QFY specifies the number of instances de-
sired, e.g. 1,17, some, all; CLASS specifies an arc name or a function on its
values, PARTITION specifies a partition or table if any and OPERATION is a

set of procedures to be accomplished on the set that has been specified. We

night wish to ask COURSE*TAB for all courses with more than 5 students;

(FOR SOME STUDENTS COURSE#TAB (IF STUDENTS GR 5
(PRINT COURSE STUDENTS)))

The OPERATION argument accepts a program of procedures in a data language
convenient for the user.

The interpreter must also accept Assertions and Deletions. A set of
predicates may be asserted to the network with the following command:

(ASSERT ((COURSE#TAB COURSE 375 STUDENTS 7)

(COURSE*TAB COURSE 343 STUDENTS 23)))

The result of the ASSERT is to create INST and SUP arcs from COURSE*TAB to

COURSE*TAB3 and COURSE*TAB4, and to create the arcs COURSE, COURSE*, STUDENTS

and STUDENTS* between the data items. Convenient brief forms such as

ASSERTAB can also be provided, e.g. (ASSERTAB TABLE COURSE*TAB
FORM (COURSE STUDENTS)
DATA ((CS375 37)(343 23)))

DELETE can accept the same forms as ASSERT and delete them from the network.

P L o S . O . N
it - -t P S T e . _,Awn_mm,;J

Page ..

In some applications where many small tables characterize the data,
it may prove desirable (in order to save memory) to avoid indexing the values
of data in the tables. In this event the semantic network form of the table
is exactly the same as the argument form of ASSERTAB. For example the unin-
dexed form for COURSE*TAB appears as follows:

(COURSE*TAB FORM (COURSE STUDENTS)

DATA ((CS380 5)(Cs381 7)))

Since this is a well-formed semantic network, it may be directly Asserted.
A variation of the quantified FOR statement, FOR*, can be provided to query

unindexed tables.

Page .. .

IV. Text

In its printed form a text is an ordered set of word symbols. For
retrieval purposes it is best represented as an index of Word-types and a list
of occurrances of Tokens. Consider the sentences, "Big fish eat little fish.

Little fish eat littler fish." The representation as types and tokens is

shown below.

TYPES INDEX v TOKENS
1 Big (1) (1234242352)
2 Fish (2,5,7,10) .
3 Eat (3,8)
4 Little (4,6)
5 Littler 9)

The tokens are references to entries in the type list which for each word-
type shows a list of its occurrences as sequence numbers referring to the
string of tokens.

For retrieval from such a structure, any list of words may be taken as

a request and the Token substrings containing hits can be returned as answers

ordered by the number of hits in each substring. This is the general approach
to keyword retrieval as used in many kinds of system.
This approach is adapted easily to representation in semantic networks

almost literally as shown below:

(BIG NBR 1 TEXT1 (1)) (TEXT1 SEQ (1 234 24 235 2))
(FISH NBR 2 TEXT1 (2 5 7 10))

(EAT NBR 3 TEXT1 (3 8))

(LITTLE NBR 4 TEXT1 (4 6))

(LITTLER NBR 5 TEXT1 (9))

Page .5

If we query with the procedure KEY* to retrieve what it said about "little

fish";
(KEY* (LITTLE FISH))

under the requirement of returning sentences as answers, both sentences would
be returned. 1In the process the tokens would be translated back to words. The
procedure for retrieval operates wholly on the index to determine an ordering
of the sentences in the text, then reconstructs those sentences from the token
E list.

Many heuristics have been developed as variations on this simple retrieval
scheme to improve the ordering of answers. If the text is large its token list
can be subcategorized by volume, chapter, paragraph and sentence so that the

index numbers each become tuples and the search through the text string is

shortened to any extent desirable. For example, if we partition the text by

sentences marking each sentence in TEXT1 with parenthesis,

BIG TEXT1 (1.1)

. FISH TEXT1 (1.2, 1.5 2.2 2.5)
EAT TEXTL (1.3, 2.3)

LITTLE TEXT1 (1.4, 2.1)

. LITTLER TEXTL (2.4)

wmo>wN e

TEXT1 SEQ ((1 2 3 4 2)(4 2 3 5 2))

we then use 2-tuples 1X, 1Y as indexing numbers. If we wished to further
4 . partition the text to chapters and paragraphs we would use a 4-tuple as an

index number:

chapter*paragraph*sentence-sequence-

= + N .
JEPUPRE S0y - T N

P SV U A

Puse att

The network representation for text is designed to minimize storage
requirements by represciting each text as a vector of tokens where each word-
type occurring in the text references the vector locations of its occurrences.

As with tuples and tables, the procedures ASSERTEXT and DELETEXT can be

defined.

i
i
i
{

oo —

V. Discussion

A core-limited prototype of the proposed system exists in LISP 1.5 on
both the CDC and DEC1l0 systems. As it stands it can translate English state-
ments and questions into semantic network forms. A translator is provided to
enable a user to use Kowalski's form of predicate logic notation. Our
experimentation with this system has been primarily oriented toward insuring
that the semantic network representation is logically complete and that its
proof procedures for answering questions are adequate. Tables can be directly
asserted to this system as it is and their contents can be queried.

Procedures for interpreting the quantified FOR statement are not yet
developed. Additional procedures are needed to provide for storing and
querying unprocessed text.

If a large INTERLISP system were available, with its paging control as

a disc memory manager, the prototype could deal successfully with several
million words of data. In the local environment it is limited to about
300K words for system and data and is expected to be useful primarily for

developing data structures and language interpreters.

1

REFERENCES

Black, Fischer, A Deductive Question Answering System, in Minsky, M., (ed.)
Semantic Information Processing, MIT Press, Boston, 1969.

Kowalski, Robert, "Predicate Logic as Programming Language', IFIP Congress,
Stockholm, 1974.

Simmons, Robert F., Rule-Based Computations on English, in Hayes-Roth, K.
and Waterman, D., (eds.) Pattern-Directed Inference Systems, Acadenmic
Press, N.Y., 1977 (in press). Also, University of Texas, Department

3 of Computer Science, Technical Report, NL31l, Austin, 1977.

Simmons, R.F. and Chester, D., Inferences in Quantified Semantic Networks,
IJCAI77 (in press), and University of Texas Department of Computer
Science, Technical Report NL32, Austin, 1977.

oA L

APPENDIX 2

TOWARD A DESIGN METHODOLOGY FOR DBMS:

A SOFTWARE ENGINEERING APPROACH

by

Raymond T. Yeh and Jerry W. Baker

A design methodology for DBMS is presented. The methodology consists of
three interacting models: a model for the system structure, a hierarchical
performance evaluation model, and a model for design structure documentation,
which are developed concurrently through a top-down design process. Thus,
using this methodology, the design is evaluated and its consistency checked
during each phase of the design process, It is shown that systems designed
using this methodology are reasonably independent of their environments,
reliable, and can be easily modified. A modest example is used to illustrate

the methodology.

PO R inke

]

TOWARD A DESIGN METHODOLUGY FOR DBMS:

A SOFTWARE ENGINLERING APPROACH®

Raywond T. Yeh and Jerry W. Baker

Department of Computer Sclence
Unfvers:ty of Texas
Austin, Texas U.S.A.

A design mecthodology for DBMS {s presented.

The methodology consists of three i{nter-

acting models: a model for the system structure, a hierarchical performance evaluation
model, and a model for design structure documentation, which are developed concurrently
through a top-down design process. Thus, using this methodology, the design is evaluated
and {ts consisteacy checked during each phase of the design process. It 1s shown that
systems designed using this methodology are reasonably independent of their environments,
rellable, and can be easily modified. A modest example is used %0 illustrate the method-

ology.

INTRODUCTION

The eavironment of a DBMS can be partitioned
into three categories of things: machines, data,
snd applications (or users)., Furthermore, they
ate dynanic and constantly changing. Thus, it
secms reasonable to require that the design of a
DBMS be such that the resulting system {3 as
{adependent of its environment as possible so
that it can evolve along with its environment.

Although a significant amount of research
has bcen dedicated to specific aspects of data
base systems (data models, query languages,
performance modeling, etc.), relatively little
has been accomplished in the way of integrating
these ideas {ato a design methodology which can
be used to system2tically construct data base
systens for large classes of applications. Part
of the reason for the lack of a design methodology
for DBMS {s, we believe, due to the complexity of
its environment. For example, the environment of
an operating system only consists of machines
(processes) and data (rescurces). Since the de-
sign problems for a DBMS are diverse, we believe
that appropriate knowledge from other disciplines,
especially in software engineering, can contribute
tovard a unified design methodology for DBMS.

In this paper we shall describe a design
methodology for DBMS. Our basic phdlosophy is
that the design process can be grossly described
by threc models: a model for the system being
designed, a wmodel for system design evaluation,
and a model for design structure documentation.

The system structure is modeled by a set of
n+l abstract machines, Hn. Hn-l""" connected by

Q
a set of n Implencentation programs, In' In-l""'
11. Each machine in the hferarchy repr¢sents a

"vicw" of the system at a particular level of

® This rescarch {8 supported by AFSOR under contract
AFOSR-77-3409 and by ARPA under contract
R00019-77-C-0254 and by an IBM Pre-Doctoral
Frilowship to the second suthor,

abstraction and, moreover, constitutes a refine-
ment of the previous (higher) level {n the sense
that 1ts data abstractions are used to "implement"
those of the previous machine.

In order to minimize the system redesign ef-
fort, we believe that design must be evaluated
during the design process. To do so, we propose
2 hierarchical performance evaluation model which
is to be developed top-down alongside the develop-
went of system structure. Its main function is to
provide feedback to the designer as to which alter~
unatives at the current level can satisfy the per-
formance constralnts. However, even with perform=-
ance evaluation provided, backtracking is inevi-
table. 1t would be very desirable to know during
backtracking vhy some aof the previaus alter-
natives were not chosen. Thus, a language for
documenting the desigu structure is desirable and
will be discussed in a later section.

In summary, we will introduce a design method-
ology for DBMS whizh allows constant -evaluation cf
the system as the design unfolds.

DESIGN OF HIERARCHICALLY STRUCTURED DBMS

In this section we present a methodolosy in
which we borrow heavily from software engineeringz.
This methodology provides rfor the systematic de-
sign, specification, and implementation of a re-
liable DBMS such that integrity and security con-
straints can be automatically included and that
correctness proofs can be established for the
resulting system. Using this methodology, 2 DBMS
can be described and structured in a hierarchical
fashion. The design is top-down and the resulting
system will consist of multiple levels - each
level being described by a self contained specifi~
catlon.

Abstraction, Stepwise Refinement, and DBMS Deslign

One of the most powerful tools in software
development 18 abstraction. The use of abstrac-
tion allows a designer to initinlly express his
solutfon to a problenw {n a very general term and

%kThis paper was invited for the VILDB held in Tokyo, Japan, 1977, .

0

» : o 5 P i "

»

vith very 3ttle repard for the detntls of {mple-
tentation. This {nitfal solutfon may be reflned

fn a step by step manncr by gradually introducing
more and more detatls of implementatlon. The
process continues until the solution fs finally
expressed within the framework of some appropriate
“tarpet" language. This combination of abstraction
and stepwise rcflinement enables the designer to
ovcrcome the problem of complexity inherent in the
construction of systems by allowing him to concen-
trate on the relevant aspects of his design, at any
glven time, without worrying about other details.
An fmportant result of this approach is the devel-
opmeat of a hierarchically Structured system
(function abstraction) such that each level con-
s{sts of a number of modules (data abstractions).
Thus, the system is both horizontally and vertically
modular.

The notion of abstraction is also impor-
tant from the standpoint of protectfon. Through
data abstraction a designer may limit the access to
a data object through a specified set of well-
defined operaticns. Likewise, by hidiag the
fmplementation of a data abstraction from its users
the designer protects them from any changes which
might occur in that implemencation.

We envision the design of a DBMS as a step-~
wise refinement process of functional abstraction
wvhich begins with the construction of a "top-
level” ahstract machine, M_, satisfying the
functional requirements of some high level require-
wents specification. This machine consists of a
set data abstractions represented by formal module
specifications. Each module specification is self-
contained in the sense that gy specifies the com~
Flete set of operations which define the nature of
the data abstraction. Collectively, these data
abstractions define the data model which is visible
to the user of the wachine.

In the next step of the process, another
sbstract machine, Hh-l’ representing a "refinemeat"

of Hn i1s designed. 1Its data abstractions are chosen

in such a way that they can "{mplement" those of
M . Basically, this implementation consists of a

set of abstract programs each of which defines an
operation of Hn in terms of accesses to functions

of machine Mn-l' A verification process can then

be used to ensure that the fmplementation is con-
sistent with the specification of both machines
(the implementation and verification processes are
described in more detail in a later section).

This stepwise process of machine specification,
{mplementation, and verification proceeds until, at
some point, the data abstractions of the lowest
level machine can be easily implemented on a speci-
fied "target” machine, which may be the data ab-
stractions of some programming languape, a low-~level
file management system, ot the operations of some
appropriate hardware configuration. This design
process results in a DBMS structure consisting of
8 hicrarchy of abstract machincs, or levels,

Hn. n-l""'"O tonnected by a set of n programs

,n'ln—l""'ll' Each machine Ml

reptesents a complete “view” of the DBMS at a par-
ticular level of abstraction while the corresponding

in the hierarchy

program li(li’iﬂ) represents the implementation of

that view upon the next level machine Ml-l'

Module Specification .

The mcthod of module specification used in
this hierarchical approach s based upon the work
of Parnas [1972) and Robinson and Levitt [1977}
wvith slight modifications (see Baker & Yeh,{1977)).
The spccification of cach wodule defines two types
of access functions, SV and ST. SV functions
return values and the sct of all SV functions of a
machine is said to characterize the machine's
abstract "state'. ST functions, on the other hand,
produce a state change in a machine. The state
change which a function produces in a machine {s
defined {n an EFFECTS section of the module
specification. Each "effect" 1s an assertion
defining the change in the value of an SV function
of the machine when the ST function is success-
fully invoked. The only observable change in the
state of the machine produced by the execution of
the ST function 1is that defined in the EFFECTS
section.

The specification of each module also includes
a set of exception conditions each of which
defines a condition about which the invoker of an
operation must be notified. Ao exception condi-
tion definition consists of a name with a formal
parameter list and a predicate using the SV
functions of the module and the formal parameters.
The specification of e:ch function in the module
countains a list of exception conditions with the
parameters of the function call appropriately
substituted for the formal parameters of the
exception condition list. If any predicate de-
fining an exception condition in the list is true
when the function is invoked, then a specified i
action is taken by the system. If the exception
condition is "fatal” and the function is of type
ST, then the effects specified in the function
definition will not be observed and the user is
appropriately notified. If the function is of
type SV, then the value(s) returned is (are)
undefined. For a "non-fatal" exception condition
a simple warning message is issued.

acait

Iaplementation and Verification

The implementation between two adjacent

machines M, and M;_, is the process by which the

data abstractions of H1 are defined in terms of

the data abstractions of M More formally, 1if

1.2 K -1
F, = (fl'fi""‘f1) is the set of module functions
for Mi then the implementation of H1 by Hl-l is
defined by
1, = (8,01 ,p00eensp))
vhere 01 s a mapping from the states of M, | to
the states of H1 and pi 1s an abstract program
which fmplements the function f{ on machine Mi-l'
‘The mapping function 01 has the cffect of "binding" .
each state of M, to a scate or sct of statcs of -4
M That 18, 4f S, and S are the state sets |

1-1* i 1-1

B e ——,

F -

of M‘ und Hi-l' reapectively, then the mapping

[/ is defined such that for cvery state s, ¢ S

i 1
ve have s, = 8 (s, ,) for some state 8,1 °0 8¢
The mapping function s actually constructed by
expressing each SV function of "l as an expression

t-1°
expression 18 referred to as a partial mapping
function and the set of all partial mapping Func-
tions for M1 comprises the mipping 01.

1

containing the SV functions of M Each such

The purpose of abstract program pi is to
express the function Ii of H1 in terms of the

functions of M Thus, the program is constructed

1-1°
using well-defined control constructs and the func-
tion set Fl-l' This implementation process must

be consistent with the formal specifications of
"1 and Hi-l' That 1s, the following commutative

diagram must be satisfied!

f’ '
., b sy .
[
1 g,
-1 3 Tt
. pi ’
Fig. 1
vhere sy and si are states of N1 and S and

] are states of M

1-1 i-1°
The verificatioo of the implementation 11

requires a formal proof that the commutative dia-
gram of Fig. 1 is satisfied for every abstract

program pi. This verification process is basically
a standard inductive assertion proof (Hioare,{1970})
on pi and we, thercfore, only give a brief descrip-

tion of {t. However, the reader is referred to
Robluson and levitt {1977} which contafns a de-
tafled discussion of the hierarchical proof tech-
niques used in the methodology.

In general, the precondition for each abstract
propram pi fs true because the program contains {its

own mcchanisms for exception handling. The output
]
1
in the FFFECTS scctfion of the speciffcation for

asscrtions for p; are derived from the asscrtions

functfon fi and frem the wapping function ﬂ1. Each

output asscrtion is obtained by taking an EFFECTS
assertion and replacing each referencec to an SV
function by the instantiation of the appropriate
partial mapping function of I‘.

)

Inductive assertions for Py can be taken

directly from the EFFECTS sections of the ST
operations used to construct the program. Verif{f-
cation conditions can then be derived and used to
establish the validity of these assertions. The
verification of the output asgsertions then follous,

Design and Specification - An Example

The concepts discussed in the previous section
can perhaps be best understood by looking at a
DBMS designed using this hierarchical approach.
A partial outlfne of such a system is shown {n
Tables 1 and 2. Table 1 contains a brief descrip-
tion of the nature of each system module, while
Table 2 outlines the basic properties of the
different level machines.

Table 1. A description of the system modules.
Only s partial list is given for each level.

Level $

UNIV - Defines operations for recording
and accessing information about
unfversity departments and
professors.

Level &

REL ~ Defines the concept of a relation
through relatfonal algebraic
operations.

INT ~ Specifies operations for creating
and enforcing "integrity assertions"
which specify allowable data values
for relations,

AUTH ~ Defines operations for creating and
enforcing "authorizations" which
specify allowable {nteractions for
users.

Level 3

RT ~ Defines operations for creating,
updating, and accessing logical
"record tables".

RDIR - Represents a directory of existing
record tables.

FNT ~ Defines tables containing information
about. field values for each existing
record table.

TDS - Specifies operations for crcating and
accessing sets of record ideutifiers,
Uscd to fmplement the concept of a
cursor (Astrahan {1976}).

IMAGE -~ Represents logical reorderings of
records (Astraban [1976})).

IMCAT -~ Definea a catalog of existing images.

SEL -~ Specifics operatfons for creating,
maintainfng, and accessing partial
indcxes to record tables.

Table 1 (Cont'd.)

SLCAT - Represents a catalog of existing par-

LNK -

LCAT -

BIR -

RBLK ~

Level 2

tial indexes,

Defines operations for creating, mafn-
taining snd using logical assoclations
between records of different record

tables.

Represents a catalog of associations.

Defines the concept of a B-tree.

Level 2 (Cont'd.)

-RBDX - Spcciffer opcrations for creating and
using directories to RBLK structures,

RIDX ~ Represents fixed-length blocks of
record pointers.
the TDS, SEL, and LNK modules of

Used to implement

Level).

Level 1

VP ~ Defines the concept of a virtual page
space.

Used to implemcnt the IMAGE module

of Level 3,

Represents fixed-length blocks of
Used to fmplement the FT

records.
and LNK modules of Level).

Table 2.
structured DBMS,

Level O

Machine hardware

A brief description of six levels in a hierarchically
The actual system contains eight levels.

However, for purposes of presentation, several levels vere

combined.

Level

Visible Concepts

Operations

Concepts Ridden
By Level

eatities (untversity
departments, professors,
etc.), and their
attributes

operations corresponding
to real-world transitions
("hire", "terminate", etc)
sud queries ("get_salary",
“get_age", etc.)

logical structure of
data

relations, tuples, cursors,
authorization and integrity,
assertions

" operations, creation

algebraic relational

and enforcement of
authorization and
integrity assertioms,
cursor creation and
scquencing operations

access paths, record
table structure, record
{dentifiers

record tables, records,
images, partfal indexes,
record table associations,
record identifier sets

creation, access, and
maintenance of record
tables, access paths,
and record identifier
sets

record block structure,
implementation of access
paths

fixcd-length record and
pointer blocks, B-trees,
links between record
blocks

tecord block access,
B-tree operations

bit representation of

information, distribution
of rccord block and B-treq
nodes on virtual memory

pages

virtual page space

bit and byte extraction
and encoding

distribution of pages
in memory devices

primary and sccondary
nemory devices

paging operations

.

The top~level machine, M., vepresents an appli-

5
catfon view of the system. the UNIV module pro- .
vides eperations [or recording and accessing infor-
pation about unfversity departmeats and professors,
Specifically, the information represcnted includes
the following:

1. the name, socfal sccurity number, age
salary, rank, and department of all
professors cmployed by the university,and

2. the chafrman, number of professors, and
average salary for each unfversfty depart-
ment.

The ST operations of the module are semanti-
cally meaningful - each corresponding to a real
vorld transiticon. They include "hire", "terminate",
“promote”, "raise_salary”, and "change_chairman”.
The SV functions of the module include '"get salary"
“get_chairman", and "get_rank”. At this level of
interactfon a user is well-protected from organi-
zational changes in the database 3ystem because no
physlical (access paths, storage structures, etc.)
or lorical (relations, etc.) structures are visible,
Rather, the user 1s aware only of very abstract
relationships and transitions which may occur in
his applicacion.

The operations of the UNIV module are imple-
mented on the next level machine, M,, which repre-
sents a relational algebrz view of the database
system. The REL module, for example, defines the
concept of a relation fn terms of relational alge-
braic operations while the RDIR module represents a
relatfcn directory which contains information about
all existing relations. The two other modules
shown, INT and AUTH, relate to the concepts of
integrity and authorization and are described in
more detail in a later section. We note that at
this level of interaction the concept of an access
path is completely hidden from the user. That is,
the operations at this level provide no mechanisms

for defining, deleting, or using any type of access

path. i . .
At the level of machine M3 the DBMS represents

‘a8 somewhat different view. A user of this level
can create and manipulate logical record tables
(RT module) and a directory (RDIR module) to record
fjoformation about existing record tables. Also,
several modules - IMAGE, LINK, and SELECTOR - make
it possible to create fast access paths to records
‘of existing reccerd tables. The fmplementation of
"A by "3- of course, consists of programs which
implement the module functions of M4 in terms of
the module functions of “3' Thus, for example,
the relatfonal alpebraic operations of the REL
rodule sire foplemented in terms of record table
operations and calls to the appropriate functions
of the fast access path modules.

As the DRUS {3 viewed at Jower levels-the data
abstractions become more “physically"” oriented un-
til the Jevel of the machine hardware i1s reached.
Missing 4= the sharp transition from logical to
physical representation found in many systems.
Rather, there 15 a gradual progression from a very
abstract view to machine hardware occurring in a
cequence of dincrete steps.

Leveln of Abstractf{on aud DRMS Design

We obaerve that the notion of lcvcils of
abstraction tranalates to a natural interpretatfon
within che contcxt of database systcms. That is,
it con bc expected that any integrated data base
will have a wide varicty of users whose views of
the rystem and access requirements will be quite
different. Through the hierarchical design ap-
proach different levcls of design may be con-
structed to accommodate this variety of vicws and
access requirements (Fig. 2).

The design of the system showm in Tables 1 and
2 illustrates how different users may be accom-
modated through hietrarchical design. At the
highest level of abstraction, for example, is the
casual user who 1s concernced primarily with acces-
sing the information relevant to his application
with as little trcuble as possible. He {s uncon-
cerned about efficiency and organizational
properties of the data and, therefore, is provided
vith a set of high-level, semantically mcaningful
operations which hide such details.

EXTERNAL
USER

| »
n_

" [QO- - - O]

Target Machine My

Fig. 2. A hierarchy of formally specified
machines showing modularity. Levels may
be constructed to accoumodate the differeat
views required by various users.

The privileged programmer, while still being
concerned with the information relevant to his
applicati{on, is also concerned with the efficiency
of his interactions with the system. Therefore,
he may be willing to sacrifice a certain amount of
data independence for increased efficiency. A
privileged programicr may therefore require access
to levels 3 or 4.

The application programmer's job is to create
interfaces for new applications when they arise.
This may require a modification to the top-level
machine or possibly the specification of new
machines to be implemented on existing lcvels.

The application proframmer would most likely
require interaction with levels 3, &4 and 5.

The accens path programmer has the task of
cresting faue access paths for the system. Like
the application programmer he 18 not interested in
the i{nformation content of the system, but rather
in detining access paths which enhance the effl-
ciency of other users. The access path programmer
would thus interact at level 3.

Finally, the storage structure development
proprammer interacts with the system at level 2,
His task {s to ensure that logical access paths
ate implemented as efficiently as possible.

Our mention of the different levels of users
is nefther intended to be exhaustive or even the
best possible. We merely wish to emphasize that
the hierarchical design approach can be used to
construct levels which correspond directly to the
views of the system desired by different types of
users and that this 1s a useful way of partitioning
the diffcrent interfaces required. We do not mean
to imply, however, that every level in a hierarch-
ically structured system will correspond to a type
of user. Different levels may in fact be intro-
duced during the design process merely as an aid
to the designer himself.

Design of Authorization and Integrity Mechanisms

Protecting a data base from semantic errors
and from use by unauthorized persons is, of course,
an important function of any DBMS. The develop-
ment of integrity and authorization subsystems,
then, i3 an integral part of the DBMS design
process. Through the use of exception conditions
the hierarchical design approach provides a reliable
mechanism for handling such problems. Exception
conditions provide a means by which the designer.
ran specify that a function cannot be successfully
{oveked when certain integrity or authorization
conditions are not satisfied.

Consider, for example, the "hire" function of
the UNIV module of level 5. This function requires,
among other things, the specification of values for
the parameters rank and salary. The function has
a fatal exception condition

BAD_SALARY (salary,rank)
wvhich is defined as

BAD SALARY(s,r):
case r of
"ass{stant professor™: g>13000;
"associate professor': §>24000;
“professor': s>40000;
end.

Therefore, if the "hire" function wvere invoked with
salary=19500 and rank="assistant prcfessor’ then
the effects of the function (as stated {n the
wodule specificationns) would not be observed. That
is, the function vould have no effect on the state

of machine “5'

The appreach is similar at lower levels of the
desipn. 1he design of the INT module, for ‘example,
provides for opcrations which enable the creation
of "Inteprity assertions"” which definc the semantie
correctne=s of existing redations. Morcover, the
vodule contafns certain SV functions which can be
vsed to decermine if a particular update operation
wvould viclate defined Integrity assertions. This
wodule comhined with the oppropriate exception

conditions {n the RFL module can be used to enaure
that any update function which would violate de-
fined {ntegrity assertions cannot be executed.

For example, the function

ingert_tuple(r,R)

of the REL module has the effect of inserting
tuple r into relatfon R. One fatal exception
condition for this function is

BAD_TVAL(r,R)
wvhich 1s defined as

BAD_TVAL(t,T): 31i(l<i<ncomp(t))
(check_val(domain(4,T),T,t(1))=
false]

where ncomp(t) returns the number of components
of tuple t, t(1) is the ich component of tuple t,
and domain(i,T) returns the name of the ith domain
of T. Also, check val(d,S,v) is a boolean
function of INT which returns true {f v is an
acceptable value ‘or domain d of relation § and
false othervise. This specification indicates
that the operation insert_tuple(r,R) cannot be
executed i1f the tuple r contains data values
which are non-allowed by any defined integrity
assertions. Moreover, the verification process
ensures that the abstract program implementing
the insert_tuple function satisfies this specifi-
cation. .

Protecting data objects from unauthorized use
can be handled in a similar manner. For example,
the AUTH module enables the creation of "authori-
zations" which define the allowed accessed to
level 4 data objects. Also, an SV function can
be used to check 1f a user has a certain access
to a data object. Each module function of level 4
contains an exception condition which prevents
unauthorized access from occurring. For example,
the insert_tuple(r,R) function has the exception
condition

NO_AUTH(uid,R,'INSERT')
vhich is defined as
NO_AUTH(id,S,op): check_auth(id,S,op)=false

where uld is the fdentification number of the user
invoking the function and check _auth(id,S,0p) is

a boolean function of AUTH which returns true if
user "1d" has "op" access to relation S. Agaln,
the verification process can be used to ensure
that the fmplementation of insert_tuple satisfies
this specification,

An Assessment of the Methodology

The mcthodology presented in this section {s
but a small step in the devclopment of a deslign
theory for DBMS. 7This approach has sevcral
advantages over ad hoc mcthods currently used.

We summarize a few of tle most important ones here.

1. Relfability of Design

The multi-level design process enabhles the
desipner teo concentrate on the relevant

. aspects of cach level without worrying
about {mplementation details. Also,
because the implementation occurs in small
steps the probability of desipgn errors is
reduced,

Afe i

-

' \ -
. .
. . L v
Lovauiiae. ks St e o il b, bt B ro. ¥ a B L

2. Mochioe, Applicntion, and bata
Indejcodence

1he horizontal and vertical modalarity
provided by this approach to DBMS design
enhances machine, application, and data
indepcndence of a system. Machine {nde-
pendence is enhanced because the infor-
nation hi{ding properties of each level
1imit the effects of modifications to
hardware architecture. Vertical modu-
larf{cy provides a degrec of application
independcence because the addition and
deletion of applications can be accom-
madated throurh changes in columns
(modules and their vertical refine-
ments) but not the whole system.

It should also be clear that each
level of a hierarchically structured
system provides a measure of data
independence. That {s, each level tends
to hide from its users tuae organizational
properties of lower levels. Providing a
hferarchical structure can thus be useful
in protecting the system itself from the
effects of internal modifications.

3. Formal Consistency Proofs

The hierarchical nature of the implemen-
tation reduces the verification of the
entire system into a sequence of the
hierarchical proofs designed to insure
the consistency of the specification and
impleme’ tation of adjacent levels. Be-
cause the verification proceeds in
scquence with the design process,
implrmentation errors can be detected

at the sare level in which they are
introduced.

4, Localized FEffects of Modification

A databasc system fs a dynamic entity which
tequires constant modification and mainte-
nance. Even after the system is installed
and operating, frequent modifications way
be required to correct pregramming errors
ot to increasc system efficiency. Like-
wise, design changes may be necessary to
adapt the system to changing user require-
ments or to a new opcrating environment.
If the system s poorly designed then the
lmpact of such modifications may be so
great that maintenance is a significant
part of the overall development cost.

At each level of a hierarchically
structured, modular system, an abstract
concept {s realized by a formally speci-
fird wodule. Because the module structures
hide all aspects of the fmplementation,
nodif{ying a machine design or {mplemen-
tatfon requires only localized changes

in the system.

5. Understandability

The hicrarchical desipn process allows the
desifner to understand the operation of
the system at each level of abstraction
before proceeding with the implementation.

6. Formal Specification of Exception -
Londitlans
The hierarchical nature of the system
structure enables the specification of
exception conditfons at the most
appropriate level of abstraction. As
a result, integrity and security checks
can be casily specified.

There are, of course, many difficult problems
remaining to be tackled in order for the method-
ology to be cffective. We will point out a few
here.

1. The mcthodology needs to be extended to
incorporate the concept of multiple users
and concurrent access.

2. There needs to be additional design
tools for testing formal specification
so that a desfgner is reassured that a
lengthy formal statement is "consistent”
with his intuition.

3. Development of hierarchical performance
models for design evaluation. The per-
formance modeling subsystem not only
should be able to predict the gross
system performance characteristic at
each level, but should also be able to
provide guidelines for structuring data
bases which can best fit the system. An
informal approach will be presented in a
later section.

4, There is a great nced for methods and
automatic aids to document the design
structure. This is important for
gencration and evaluation of alternative
designs. We will present an approach in
the next section.

DESIGN STRUCTURE NOCUMENTATION

The role of specifications in the developaent
of large software systems is certainly an {mportaunt
one. Spccifications are used not only as a means
of communication between members of the desicn
team, but alse se-ve to enhance the undetstanida-
bility of the sys:em. This is {mportant “oth for
users of the system and for future design team=
which must perfoum medifications.

The previous sections have described certain
"local" specifications which are required in the
hierarchical desipn approach - module specificatfon,
abstract programs, and mapping functions. Each
such specification describes in detail the nature
of a very suwall part of the total systen. Yet
these specifications are {nadequate for purposes
of understanding the system as a whole or for
explaining why a particular design was decveloped.

There exists the nced, then, to document the
system desipn and the design process at a much
higher level of abstractfon, Such documentatfon
would suppress detajls ~ concentrating vather on
the plobal properties of the system design and the
desipn Structure.

The following scctions briefly describe a
System Desfpn language (SBL) which can be used to
document the design process and tecord fnformation

4./.-«(o’

about the decfsfon-making processes that occur
duting ft. The features of thc SUL described
in the following scctions include methods for:

1. specifying the design alternatives at
each level,

2. specifying the hierarchical relationships
between system modules, and

3. specifying the structure of each system
level.

Specification of Alternative Designs

Oune aspect of the hierarchical design approach
vhich has yet to be emphasized is that of developing
alternat{ve designs at each level. In general a
module at level { may be implemented in many dif-
ferent ways and, thercfore, at level i-1 the
designer may specify various alternative modules
to accomplish this task. There exists the nced,
then, to documeat exactly kow the various alter~
native modules for implementing the data abstrac=-
tions of level { may be combined to form designs
for level i{-1. The designer may then choose the
most approptriate alternative design as part of the
system (based perhaps upon expected performance).

Using the SPL the designer may accomplish this
task of specifying the varfous alternatives through
a process of constructing level components. The
syntax of cowmponent specification is defined
formally in the following BNF grammar:

<compname> ::= C<{nteger>
<modlist> ::= <modname> | <modname>,<modlist>
<complist> ::= <compname> l
) <compname>,<complist>
<compdef> ::= <modlist> | <complist> |
<compdef>,<modlist> |
<compdef>,<complist> -
<ctype> ::= REQ | ALT | OPT
<cspec> i1:= <compname>: (<ctype>,{<compdef>})

The simplest type of level component 1s a single
module. However, more complex components can be
coustructed by combining modules or previously
defined components.

Associated with each component constructed
1s a component tvpe specification (<ctype>) which
indicates hew "nembers” of the component may be
ctomhined or used in any alternative design. The
meanings of the thrce component types are as
followa:

1. REQ - each member of the component must
be included in any design.

2. ALT - exactly one member of the cooponent
st be { - luded fn any design.

3. OPT - exactly one subsct of the members
of the component must be present in any
design (this includes the null set).

Formation of alternative designs begins when
the desipner hag developed all alternative modules
far frplementing each data abstiraction of level {1,
The decfiner thea begins to construct a hievarchy
of e~ onrnte - each component in the hicrarchy
betrpe a co~position of lower Jevel compenents.
Thtc prrcens of corposition contlnuecs until a

sinple component has been constructed which
encompasses, dircctly or indirectly, cvery module
of the initial set. This final compounent srpecifl-
cation is then the stacting point for the develop~
ment of possible alternatives for level 1-1.
The process of compoinent construction and

alternative design formation for level 3 of

Table } can be illustrated by the following example.

C1: (REQ, (IMAGE,TMCAT))

€2: (REQ,(LKK,LCAT})

€3: (REQ,{SEL,SLCAT))

C4: (REQ, [INDEX,INDCAT))

CS: (ALT,{C1,C4))

c6: (or,{c2,C3,C5))

C7: (REQ,(RDIR,ENT,RT,TDS,C6]})

This specification indicates, among other
things, that

1. components RDIR, FNT, RT, TDS, and C6
must be In every alternative design for
level 3,

2. any subset of {C2,C3,C5) may be present
in a desfgn for level 3 (becsuse C6 is
of type "OP"),

3. 4f C5 1s chosen to be in an alternative
design then exactly one of C1 or C4 is
to be fn the design, and

4, 1f Cl is chosen to be in the design then
both IMAGE and IMCAT must be in the
design.

Each component of type "OP" or type “ALT"
represents a decision for the designer regarding
the structure of the alternative design. Different
alternative designs may thus be formed by following

. fifferent decision pathways.

Specification of Hierarchical Relationships

The next important aspect of the SDL i3 that
of specifying capability relatfonships between
modules of adjacent levels. The=e capability
relationships defin¢ the hierarchy which rxists
between the different modules of the system,
Three types of relationships are of interent,

The has access relationship indicates the
ways in which a module m can obtafn access to
instances of a module m'. We distinguish betwren
three different types of allowable access:

1. Creation access (C) - m obtains Aaccess
to instances of m' by virtue of it
ability to invoke operatfons to create
such Instances.

2. Indirect access (1) - m obtains access
to instances of m' indfrectly by using
another module m'',

.3. Clobal access (G) - m is "aware" of every
instance of m' or is provided with infer-
mation from a higher level module which
enables {t toe access {nstances of m'
*without the need to usc other modules,

The unes relationship fndicates the means by
which a module m may use instances of a module o'
to which it has access. We aleo distinguish
betwcen three different types of usage: -

1/./ &

- e e et st

1. Read (R) - m can fnvoke the SV operations
of m',

2. W¥rlte (W) - o can fnvoke the ST opcraticans
of n' to modify fnstances in some vay.

3. Create {C) - m can use ST operations to
create instances of m',

The provides relationship tndlcates what types
of module {n<tances a module m may obtain by
accessing another module o'.

Formally, a capability set for levels { and
f-1 1s dcfined as a triple (A,U,P) uhere A, U, and
P are scts of triples definey as follows:

A:(ﬂntH1X(QCJlXt%d)

X (RM,CH XM)

}

Ut {vlu eM,

P: {plp e, X Mi-l X “1-1

Fig. 3 1llustrates the capability relation-
ships which exist between some modules of levels 3,
4 and 5 of the system design of Table 1.

Fig. 3a. The has access relationship between
several modules of Table 1. The
types of access are Global (G),
Indirect (I), and Creation (C) .

frace

Figs 3b. The uscs relationship hetween several
nodules of Table 1. The types of
usage ave Read (R), Write (W), and

Create (C).

T
»

&

OEOEO®E

Fig. Jc. The provides relationship between
tome modules of Table 1.

A specification of capabilicy relationships
can be useful in enforcing restrictions on com-
munication between modules. It can also aid the
designer in assessing the impact of modifications
to system design.

Specification of Level Structure

The final aspect of the SDL which we wish to
mention 1s that of specifying machine structure.
It may be useful to allow a limited hierarchy
within a particular level and hence the SDL
enables the desiguer to specify the global proper-
ties of such a hierarchy. The level structure
specification of the SDL indicates, for any level
design, the modules which form the level interface
(those visible to users of the level), those
modules which are hidden (from users of the level),
and those modules which must use the interface of
the next level (i.e., those modules which are not
completely implemented within the level). The
level structure specification also define= the
hierarchical relationships which exist between
wodules of the level-.

Assessment

The development of SDL presented here 1s
wotivated by the neced of providing a tool to
designers to specify global or micro properties
of various system designs. It should be emphasized
however, that SDL {s meant to be an integral part
of the design process, and not merely a specifi-
cation teol to be ured "after the €act". While
wnuch of our motivation for developing the SDL is
the same as that behind the Hodule Interconnection
Language (MIL) of DeRemer and Kron [1976), there
are some fundamental differences:

1. The MIL is conterncd with documenting
syutem desipns but not the whole desipn
structure (or process). Thus, 1t docs
not support the notions of alternatfve
designs, backtracking, etc.

e B Rl

——————— e

v

2. 1o MIL, a module {8 @ swall program. 1In
$DL, we consider a module to be the
functional specificatlion of a resource
type ox abatract data typce.

J. Our module interconnectfons are bascd
strictly upon the "uses” concept of
Parnas [1974) vhile this is not the case
in MIL.

Huch, of course, needs to be done in order
for SDL to be 8 truly uscful tool. Extension to
include various concepts, such as concurrency,
locking. backtracking, ete., is necessary. Auto-
matic aids will be needed for this tool to be
practical.

HIERARCHICAL PERFORMANCE EVALUATION

The success or faflure of any DBMS, of course,
depends greatly upon the level of performance which
the system achieves during actual operation. Based
upon the results of current resear:h efforts,
bhowever, it would seem that our approaches to
performance evaluation are somewhat less than
satisfactory. This section contains a very general
description of a performance evaluation technique
which can be used with the hierarchical design
approach and which seems to have several advantages
over current performance evaluation procedures.
This technique involves the construction of a
hierarchical performance evaluation model. The
purpose of this model 1s two-fold:

1. to provide the designer with feedback
at each step of the design process as
to the performance characteristics of
his design, and

2. to provide a basis for choosing between
alteroatfive designs at each level.

In this approach the designer develops the
DBHS design and evaluation model in parallel - the
evaluation model being constructed so that it
represents the relevant performance aspects of
the current DEMS design. The evalvation model
provides constant feedback to the designer at all
levels of design as to the performance character-
Istics of the system. Through constant interaction
between designer, the DBMS design, and the evalu-
stfon model, it {s hoped that a reasonably efficient
gystem can be developed with a minimum of back-
tracking and redesign.

Fvaluation Model Structure

The structure of a hierarchical evaluation
model reflects that of the DBMS design itself.
Cortesponding to the {th level is a sect of
performance pararcters, Pi’ which represcats the

relevant performance aspects of the machine at that

level. Data styucture pavameters represent infor-
mation about the abstract data objects of the
level (c.g., number of relatfons, average number
of records per block, etc.). While function para-

neters characterize the operations of H1 in terms

of expected execution speed and expected fréquency
or probahility of acecess. Paramcters may also he
clansified an design parameters or scenario

e s

paramctera, Desipn pacamcters are variables whose
values may be chonged by the designer to determine
the cf(ccets of vatious databuse desipng and fmple-
mentatfions upon the performance of the systeam.
Scenarjo paramcters, however, vepresent an expected
uange of the system in terms of the operations and
datn objects of level 1. Their values are deter-
mincd by the values of parameters of P1+l according

to a performance parameter mapping set Tl*l' Each

wapping in this sct defincs a performance parameter
of P1 as & function of the parameters of P1+l' A

set of values for the scenario parameters of level
1 15 called a sccnario for level {.
The values of scenario parameters of Pn are

determined by an application scenario supplied as
part of the high level requirements specifications.
The application scenario is a statement of the
expected use of the DBMS in terms of the operations
and structures of machine Hn' The requiremeats

specification also contains a performance assertion
which specifies the level of performance expected
from the system for the given scenario. This
performance assertion, by its structure, will in-
dicate the measure fto be used in analyzing system
performance. Varlous performance measures might
include:

l. mean response time for a given load,

2, expected total execution time for a
specified mix of operations,

3. total storage requirements, or
4. @& suitably weighted mixture of the above.

The specification of this performance assertion
epables the designer to construct a cost function,
cn, for Hn using the parameters of Pn. This cost

fynction may be used by the designer to estimate
the performance characteristics of M-

Construction of the Evaluation Model

The construction of the evaluation mndel pro-
ceeds top-down with the design of the DBlS. After
the design of a michine at level n-1 and the cor-
responding evaluation rodel parameter unt Fn—l'

it 1s necessary to construct the mapping set Tn.
Those mappings of Tn wvhich correspond to paramaters

defining abstract data structurc characteristics
can be casily constructed from the mapping function
of the fmplementation In. However, Tn must also

- econtain mappings «<hich define the probability (or

frequency) of access of the operations of Hn—l

as a function of the probability (or frequency) of

" .access of opcrations of Hn.

These mappines can be constructed using a
technique for the formal verification of pevfor-
mance propertics of proprams which is based on
the method of inductive assertions (Vegbreit [1976]).
In this appreach an input assertion defincs the
probability distribution of the input data to o
program, From this input assertion various
inductive asscrtions describing the distributien

Al

. b

of data at various points in the progrom are
decived. Verification conditions are then con-
sttucted which enable the proof of the inductive
assertions. It is then pousible to derfve
branching probabilitice of varfous program state-
nents and the expected mean and maximum number of
loop fterations feor all loops in the progrom. This,
ia turn, yields the expected mean and maximum
number of executjons of each operation in the pro-
gram text glven that the input data 1s correctly
described by the fnput assertion.

Applying this technique to the abstract
program3 of ln enables the derivation of the

necessary pavameter mappings of Tn. The input

asscrtions for these programs can be derived from
the applicatfon scenario of the requirements speci-
ficatfon. It is then possible to compute the
expected mean or maximum number of calls to each
operat {on of Hn-l for each call to a given operation

of Mn. A set of equations can then be derived,

each of which expresses the expected probability (or
frequency) of access of each operation of Hn-l

as a function of the expected probability (or fre-
quency) of access to the operations of }%

The application scenario, which is defined in
terms of level n structures and operations, can
thus be "mapped down" to level n-1 via the mapping
set Tn to provide a scenario for the system in

terms of level n-1 structures and operations. The
designer may then construct a cost function, cn-l'

for this level to obtain e more accurate estimate
of system performance. By varying the design para-
meters of Pn-l the designer may derive a system

configuration which yields a reasonable cost func-
tion value and thus determine if the design is
capable of satisfying the performance assertion.

Alternative designs at level n-1 may be
treated the same way. That is, cost functions may
be constructed and evaluated for each alternative.
This information may then be used by the designer
as a basis for deciding which design path{s) to
follow.

The process of evaluaticn {s repeated at cach
level of the design with the uncertainty of the
evaluation model results diminishing at lower levels,
Tihe designer may use the information from the
evaluation model at any level as a basis for back-
tracking to a previous level and following a new
design path. Likewise, the information may allow
the designer to choose one (or more) design paths
to follow from a sct of alternatives. The end
result of this de:cign/evaluation process {s a tree-
1tke structure of machinc designs and a correspond-
ingly structured hierarchical evaluation model
(Fig. 4).

Assessment

The proposed method of performance evaluation
scems to have several advantages over current
approaches:

1. Understandability

Performance related fasucs are distributed

-

Fig. 4. A hierarchical DBMS design and the
' correspondingly structured performance
evaluation model. Unlabeled nodes re-

present unused alternative designs.

over wmany levels. Hence the designer may
-deal with these issues as they occur in
the natural hierarchy of design. The
hierarchical structure of the wmodel
should thus facilitate its use and under-
standing.

2. Flexibility
The designer can model each level design
{in as much detail as desired. Moreover, .
the approach does not limit the designer
to models of specific 'architectures -
models for any alternative design may be
developed.

3. Immediate Fecedback

At each level the designor receives ferd-
back frcm the evaluvation model. This,
hopefully, can limit the amount of
redesign and backtracking which 1is
necessary,

4. Data Base Design

The evaluation model used for DBUS design
may be used to facilitate the data base
design. The process would be top-down.
At each level the cost function would be
used to determine a performance-cffective
data base structure for that level.

CONCLUDING RFMARKS

The methodology presented in the previous
sections is, of coursec, a first attempt toward a
comprehensive approach to design problems. We
have assessed the three models In the methodology
at the end of appropriate scctions, However, one
point that should be stressed is that the method-
olopy provides for the development of a family of
desipns rather than o single design, Such a
documcutation will ceetainly be of immense help

to an evolving eystem. 12.
The methodology atill lacks engincering

flavor. 7To make {t complete, additfonal toolas

vill be necessary. In this aspect, we would like

to mention that the notion of a "mock-up' model 13.

should be part of this design methodology. We

think that in this context we should dcvelop

computer processable specification so that 14,

petformance cvaluation not only can be done by

mathematical modeling as we have discussed here,

but also by actual or symbolic execution of the 15

sprcification (of the mock-up modcl). Such a tool ¢

wvoul allow a designer to tinker with his design

(e.g., to make sure that forwmal spccification is 16.

consistent with the more informal requirements))

uvntil he is satisfied. Furthermore, this would

provide users with earlier warnings {f any

inadequacies were discovered in the requirements.

At the University of Texas at Austin, we are in

the process of developing such tools. 1.

REFERENCES

18.

1. Astrahan, M. M., et al, [1976], "System R:

Relational Approach to Database Management,”
ACM TODS, vol. 1, no. 2, pp. 97-137. 19.

2. Aurdal, E. and Solberg, A., [1975], "A Multiple
Process for Desgin cf File Organization,”

CASCSDE Working Paper Wo. 39, Royal Norwegian 0
Counicil for Scientific and Industrial Research. 20.

3. Baker, J. and Yeh, R. T., {1977], “A Hierarchical
Design Methodology for Data Base System,',

TR-70, Dept. of Computer Sciences, University 21.
of Texas at Austin, Austin, Texas.

4, Bayer, B. and McCreight, E., [1972], "Organi-~
zation and Maintenance of Ordered Indexes,"

Acta Informatica, vol. 1, no. 3, pp. 173-189.

S. Chen, Peter P.S., [1975), "The Entity-
Relationship Model -~ Toward a Unified View of
Data," Rech. Report, Center for Information
System Research, Sloan School of Management,
M.I.T. .

6. “Codd, E. G., {1970], "A Relational Model of
Data for Large Shared Data Banks," CACM,
vol. 13, no. 6, pp. 377-387. '

7. DecRemer, F, and Kron, H. H., [1976]), "Program-
ning-in-the-Large Versus Programming-in-the-

Small," IEEF Trans. Soft. Eng., vol. SE-2,
no. 2, pp. 87-96.

8. Goodenough, John B., (1975], "Exception Handling:
Issues aud a Proposed Notatfon," CACM, vol. 18,
no. 12, pp. 683-696.

9. Honre, C.A.R., [1970), "An Axfomatic Approach
to Computer Programming,” CACM, vol.12, no. 5,
pp. 76-80,83.

10. Kracgeloh, Klaus-Dicter and Lockemann, Peter C.,
[(1975], "Hicrarchies of Data Base Languages:

An Example,” Information Systems, vol. 1.

11. Me¥ceman, W., [1975], "On Preventing Programming .
Loanguapes for Interfering with Programs, IEEF
Trans, on Soft. Fng., vel. 1, no. 1, pp. 19-25.

o - -

Madnick, S. E. and Alsop, J. W., (1909}, "A
Modular Approach to File System Deslgn,"” Proe.
AFIPS, vol. 34, pp. 1-12.

Pacnas, D. L., [1972], "A Technique for Soft-
vare Module Specification with Examples,”
CACM, vol. 15, no. S, pp. 330-336.

Parnas D. L., [1976a], “On the Criteria to
Be Used in Deomposing Systems Into Modules,*
CACM, vol. 15, no. 12, pp. 1053-1058.

Parnas, D. L., (1976b], "On A Buzzword:
Hierarchical Structures," IFIP Proc.

Robinson, L. and Levite, K. N.,{1977}, "Proof
Techniques for Hierarchically Structured
Programs,” to appear - Current Trends in
Programming Yethodology, Vol. 2, (Yech, ed.),
Prentice-Hall.

Senko, M. W., [1976], "DIAM Il and Levels of
Abstraction,” Proc. Conf. on DATA:
Abstraction, Definition and Structure,

pp. 121-140.

Smith, J. M. and Smith, D. C. P., (1977},
CACM. ~

Weber, H., [1976], "The D-graph Model of
Large Shared Data Bases: A Representation
of Integrity Constraints and Views of
Abstract Data FBypes, IBM TC (San Jose).

Wegbreit, B., [1976], "Verifying Program
Performance,” JACM, vol. 23, no. &4,
pp. 691-699.

Yeh, - R. T, (ed.) [1977], Current Trends in
Programming Methodology: Vol. 1. Software
Specificatic and Design, Prentice-Hall, Inc,
Englewood Cliffs, N.J.

[R

PRSPV

EE—

B —

APPENDIX 3

Dan Chester

The specifications in this appendix are for a relational data base system

that stores explicit relation on sequential files such as tapes.

The time to

retrieve the n-tuples in an implicit relation is expected to grow at a rate

that is much less than Nz, where N is the number of n-tuples that can be formed

from the individuals named in the data base.

The first specification is a function module modelling the whole data

base system. It exhibits the basic behavior of the system without making

commitments to performance aspects. Each function is defined by an expression

in the following format:

function: <function name> <argument pattern> = <value pattern>

effects:

<statement>

<statement>

The effect statements are optional. When present the function is computed

by making the statements true and returning the value indicated by the <value

pattern>.

TUNCTIONS Qaiawval = X

tunctions awetinetrR(A(l),,eeerativ)), i) = il
¢rreco:

agetinitlonin(Aall),eeesainN)), 1) = LIue,

getlneulnrR) = true,

tunction: agetined(r) = x

tunctions adeflaition(x,y) = %

tunctions 1nsertiik(Atl),eeesXlii))) = nil

efrecte:

Aald(niatl),eeerX(N))) = true,

tor als 1 such tnat 1 <=1 <= n: universe(x{(i)) = true,
tunction: L1stiR) 5 (X(1),eeari(M))
eftect:

tor s1i 1,d such that 1 <= 1,Jd <= i3
it ol 1 = J tnen not X(1l) = x(J).

t0: ali 1 such that 1 <= i <= M3
tor sOC Y(1l)sewer¥(N)2
- A{L) = K(L(1)seeos¥{iv)) ana tempuata(ir(i)) s true,

TOT 1l 3(1J,eeersi(iN) sucn that tempadta(k(Y(l),,.e,Y¥(N))) = true:
LtOr sGwe 1l A(l) = h(x(l)l--.'Y(h))c

100 aild KyACL)reess&Ch) sucn that "detined’(R) = nill
teapuolal(K(X(l)reeerrhlN))) = 'Gdta’(R(k(l)'o-.,n 1) 1

1OT adlid 8sA L) reeersX(1l),8,Y{1),sees¥lJ) SuCn that
Sk b Lion (e (ALT) pene e XULD) S (A L) aner,X(J)))
TOU aia L(i),...,Z(i): Le:a'lpuul_cikﬁ(ltl),--.;Z\l)))
Lol 50me Ull),eeeruld) such thdt
tOor datl A,L2 3t din) = (L) tnen LWK) = (L), ana
it Y(h) = x(L) then U(K) = 4Z(bL)::
tewpaatd(S(U(l),eeertitul)) = true,

Ltrues
true 1t1

10r ulil K,ALI),...,X(J),S,i(l),..o:l(d) sSucn tndat
CGeilnIt1onN (REX(1) ,0eerAl1)),N0L DLY(1)paeerfld))) = LIUCE
107 odl ZCl)seeesldil):
LthUdEQ(NLZ(i)1'0012(1))) = Lrue jtt
LOD dil A SuUCh that 1| <= n <= 1! 'universe’(z(n)) = true;
Lol all Uil),eeeslitd) sucn tnat
tor ail r,L2 1t Y(KR) = y(LJ) tnen U(n) = (L) dna
1L Y(R) = X(L) then ULR) = Z(L)::

CRpddlalw Vel seaertinuid) = sidae

LOLI aiae B,ALI):.'.:XkJ),S;Y(1),...ci(d)oY:Z(l),o..oZ(K) sucn tndt
'actlhlLLOU'tP(Xll).....A(l)),b(!(l),.--.Y(J)) ana
ALL\l),..-oZ(h))) = true:
tOor ali U(l)looolU(l);
tewpudtalKlUll) yeeesUC1))) = true ift
LOr sSwyiie V(l)'-oocV(d:,W(l)loc.l”(h) such thdt
tor all m,ng

bt Y(M) = Y(N) then V(M) = VIiiN) ana
it 2(m) = 4Uiv) tnhen w(M) = w(h) ana
1 Y(M) = X(iv) tnen V(W) = U(N} ana
1t Z(M) = Aliv) rnen w(#) = uUlNWN) and
1t Y(M) = ZiN) then V(M) = UlN)J2
tempdata(S(vil),.es,viJ)J)) = Lrue ana
tenpaata(l(wil),.ee,w(h))) = true,

tunctions TIemove(Rk(A(1l),.eerX{N))) = nil
efiect:

dala(rKlALl),eee s, X(N))) = nil,

ftOor ali 1 sucn that 1 <= 1 <= &3
ll IUI dll bIY(i)'oca’Y(h) Such Lndt
thdlS(Y(l)....,X\H))) = trues
tor all J such thal § <= J <= &3 not Xx(L) = ¥Yidlis
then universe(at(l)) = nil.

tunctions tempuatal(Xx) = ¥
functions dndetine(R) = nil
etiecis
- L) = nil.

AV . e & A(l)oo...X(N),Y: Qetlnltlon(k‘X\l)ltoo'A(N))'I) = nile.

tunctions universe(x) =Y

module: DBS

procedure: insert (R(X{1),...,XN)))
definition:
include (R, (X(1),...X(N)))
for I = 1 to N step 1 do
increment ("universe'", X(I))

! procedure: remove (R(X(1),...,X(N)))
f definition:
: exclude (R, (X(1),...,X(N)))

I procedure: define (R(X(1),...X(N)),Y)
; definition:

include ("definitions:, (R, (X(1),...X(N)),Y))
include (“'defined",R)

procedure: undefine (R)

definition:
let X = find ("definitiomn",1,R)
exclude ("definition",X)
exclude (''defined",R)

procedure: 1list (R)
definition:
let X = relations (R)
while X # nil do
begin
makefile (head (X))
let X = tail (X)
end
print (R)

procedure: relations (R)
definition:
if find ("defined",0,R) then
begin
let Z = find ("definition',1,R)
let (R,X,Y)=Z
if let S(W(1),...W(N)) = Y then
return append (relations (S),(R))
else
if let not S(W({1),...,W(N)) = Y then
return appenc (relations (S), (R))
else
if let S(W(0)yee.,WN)) and T(V({1),eee , VM) = Y
then '
return append (rela:ions(S), append (relations(R),(Y))
end

: VALY G uy

procedure: makefile (R)
definition:
if find ("defined",0R) then
begin
let Z = find (“definition",1,R)
let (R,X,Y) = 2
\ if let S(W(1),...,W(M)) = Y then
begin
erase (R)
project (R,X,S, (W(1l),...W(M)))
end
else if let not (S(W(1),+..,W(M)) = Y then
begin
erase (R)
complement (R,X,S, (W(1l),...,WM)))
end
else if let S(W(1),...,W(M)) and T(V(1),.e.,V(N)) = Y
then
begin
erase (R)
join (R,X,S,(W(1),...,WN)),T,(V(1),...,V(N)))
end

procedure: find (X,I,Y)

i definition:
rewind (X)
repeat
let Z = next (X)
until

Z = nil or
(I=0AND Z = Y)vor
return Z

procedure: increment (X,Y)
definition:
let Z = find (X,1,Y)
if Z = nil then begin include (X, (Y,1))
else
begin :
let (Y ,M) =2
let N=M+ 1
replace (X, (Y,N))
end

procedure: decrement (X,Y) 1
definition:
let Z = find (X,1,Y)
if Z # nil then
begin
let (Y,M) = Z
let N= M -1
if N = 0 then begin exclude (X,(Y,M))
else replace (X,(Y,N))
end

i

procedurc: include (X,Y'
definition:
rewind (X)
repeat
let Z = next (X)
until

Z = nil or
Z =Y
if Z = nil then extend (X,Y)

osrocedure: exclude (X,Y)
definition:
let Z = "time"
erase (Z)
rewind (Z)
rewind (X)
repeat
include (Z,next (X))
until pointer (X) = nil
erase (X)
rename (X,Z)

procecure: project (R,X,S,W)
definition:

rewind (S)

repeat

let Z = next (8)

if Z # nil then

include (R,bind (Z,W,X))

until Z = nil

sort (R,X,X)

procedure: complement (R,X,S,W)
definition:

let V = "time"
erase (V)

project (V,X,S,W)
rewind (V)
startgen (X)
repeat

let Z = next (V)
repeat

let U = nextgen (X)

if U # nil and (Z = nil or U= 2)
then include (R,U)

until U= nil or U = 2

until Z = nil

—y—— e -

s ayg, Q (b‘oh'\. uj

procedure: join (R,X,S,W,T,V)
definition:

let Z = common (W,V)

sort (X,W,Z)

sort (T,V,2)

rewind (8)

rewind (T)

erase (R)

let S1 = next (8)

let T1 = next (T)

repeat

if less (bind (51,W,2),bind (Tl,V.Z))

then let S1 = next (S)

else if bind (S1,W,Z) = bind (T1,V,Z)

then :
begin
erase(82)
let S§3 = Sl
erase (T2)
let T3 = Tl
repeat
include (52,S3)
let S3 = next (S)
until $3 = nil or (bind ($1,W,Z) bind (S3,W,2))
repeat
include (T2,T3)
let T3 = next (T)
antil T3 = nil or bind (T1,V,2) bind (T3,Vv,2)
let 81 = S3 .
let T1 = T3
rewind (S2)
repeat
lec S§3 = next (S2)
rewind (T3)
repeat
let T3 = next (T2)
include (R, bind (append (S3,T3), append M, V),X)
until T3 = nil

uatil S3 = nil
end
until S1 = nil or T1 = nil
sort (R,X,X)

4~y

e e AN ¢ ¢ e S T, e Sy sl st —

U \LUiie Mey

procedure: sort (R,X,Y)
definition:

let § = "temp"
let T = "temp2"
let N =1
repeat
rewind (r)
erase (S)
repeat
lec J =1
erase T
repeat
include (T,next (R))
J=J+1)
uatil J > N or pointer (R) = nil
if J >N then begin

rewind (T)
let I =1
repeat

let W = next (T)

let V = next (R)

repeat

if W = V then let W = next (T)
else if bind W,X,Y) < bind (V,X,Y)
then begin

include (S,W,)

W = next (T)

end

else begin

include (S,V,)

Vv = next (R)

end

I=I1+1

until V = nil or W = nil
if W # then

repeat

include (S,W)

W = next (T)

I=1I+1

until W = nil

if I < 2N and V # ail then
repeat

include (S,V;

Vv = next (R)

I=1I+1

until I > 2N or V = nil
until V = nil

rename (R,S)

let N = 2N
end
until J< N

todule: files

function: file (X) = Y
function: pointer (X) = Y
L
e

unction:” rewint (X) = nil
frect: pointer (X) = 'file'(X).

function: next (X) =y

¢ifect:

for some Z(1),...,2(N) such that
'pointer' (X) = Y,2(1),...2N)): {
pointer (X) = (Z(1),...,2(N)).

function: erase (R) = nil
effect:
file (R) = nil.
pointer (R) = nil.

function: replace (X,Y,) = nil
effect:
for some Z(1l),...,Z(M4),I such that
"file'(X) = (Z(1),...,Z2(M)) and
'pointer' (X) = (Z(D),...2M)):
file (X) = /Z(l),...,Z(I-L),Y,Z(I+l),...Z(M)) and
pointer (X)=(Y,Z2(I+l),...Z(M)).

function: extend (X,Y,)= nil

effect:
if 'pointer'(X) = nil then
Jor some Z(1),...,Z(M) such that
"file'(Y) = (Z(1),...,2(M):
file (X) = (Z(1),...,2(M),Y).

function: rename (X,Y) = nil

effect:
file(X) = 'file'(Y).
file (Y) = nil. Modvic: e orl,

function: current (X) = Y

function: append (L)oo, XM) L, YD)y e, Y(N)))=
(KD 500, XG)HY M)y e e, (OON))

function: head ((X(1),...,X(N))) = X(1)

function: tail ((X(1),...,X@)) = (X(2),...X())

4

—————— e - — - ———

AD=A108 108 TEXAS UNIV AT AUSTIN DEPT OF COMPUTER SCIENCES F/6 9/2

DECISION SUPPORT SYSTEMS: A PRELIMINARY STUDY!(U)

SEP 77 R T YEH: W W BLEDSOE: M CHANDY NOO039=T77=C~0254
N

UNCLASSIFIED

a2

ERew

L4

]

||||| 10 e s

=z
l"" T =
— s

Iz flis e

MICROCOPY RESOLUTION TEST CHART
NATIONAL Kb AL cr ~TANE 6L~ (o &

A U \Luaie ey

function: bind ((X({),... . X)),
(Y(1),...Y(™),
(z2(1),...,2(N))) = (U(L),...,U(N))
effect:
for all I,J such that I < I, J < N:
if Y(I) = Z (T) then X(I) = U({J) and
if Y(I) = Y(J) then X(I) = X (J).

function: startgen ((X(1),...,X{(N))) = nil
effect:

for some Y(1),...,Y(N) such that

for all I such that 1 < I <N:

Y(I) = Y(I + 1);:

for some Z(1l),...,Z(M) such that

'oblist' = (Z(1),...,Z(M)):

for all I such that 1 < I < M:

Y (1) £2 (D);;

current (X(1),.++,X(M) = XD ,..., YD)

function: nextgen ((X(1),...,X{N))) = (Y({1),...,Y(N))
eifect:

for some Z(1),...,Z{N) such that

'current' (X(1),...,X(N)) = (Z(L),...,Z(N)):

current (X(1),ees, (Y(1),...,Y(N)) and

for some I such that 1 < I < N:
] for all J such that 1 < J <I:
' AQJ) = Y(J);
for some W(l),...,W(M) such that
oblist = (W(1),e.. ,WM)):
for all J such that I <J < N:
for all 1 such 1 <1 <M:
Y(I)<H(K) 3 _ E
for some 1 such that 1 < 1< < M: ;
Y(J) = W(K); {
for all J such that 1 < J < M: :
Y(I) < W(J); i
2 S Z(I) <Y(I). |

; function: common ((X(1),...,X(M)),

: (Y(1),...Y(M)))= (2(1),...,2(1<))
A effect:

for all I such that 1 < I <
if for some J such that 1 <
~(L) = Y(J); then

. for some J such that 1 <'j <<1 :

X(1) = 2(J);

for all I such that 1 < I < 1<:

for some J,H such that 1 < J < M and

1 < H < N: Z(I)=X(J) and Z(I)=Y(H);

for all J such that 1 < J < L% and I ¥ J:
Z(1)#2(J).

—

DT

Y & e

- - - R i RN

_ .
PPV RIUE SRR | S NS AP ARPIR

function: oblist = X

unction: tooblist (X) = ail
fect:

for some Y(1),...,Y(N) such that
'oblist' = (Y(1),e..,Y(N)):
oblist = (X,Y(1),...,Y(N)).

L
(.39

fuaction: fromoblist (X) = nil
eif

ect:
for some Y(1),...,Y(N),T such that
'oblist' = (Y(l),...,Y(I),X,Y,(I+l),...,Y(N)):
oblist = (Y(1),ees X (X)),

a

A, T A — o ————

s -

i

s iac

APPENDIX 4

A METHOD FOR CONTROL OF THE
INTERACTION OF CONCURRENT PROCESSES
by

M. H. Conner

It is the objective of this research to explore a method for controlling
the interaction of concurrently executing processes. The nature of my approach
is to observe that processes exhibit an external behavior in the form of calls
to operations to shared data objects. My basic premise is that by placing
various external controls on this behavior one can usefully control the inter-
action of concurrent processes. 1 examine this premise by giving a model of
computation in which the external behavior of processes is well defined.

I then introduce the notion of behavior controllers to constrain the external

behavior of processes.

In the following, I present a model of computation which I call the

structured environment. I chose this name since it reflects my desire to

def ine a model which is both sufficiently and appropriately structured for
rigorous identification of the interaction between control and data. As
the name "structured environment' connotes, it is my intention to incorporate
several of the notions associated with "structured" programming. Namely, the
model incorporates the notions of one entry/one exit control structures and
abstract data objects.

In order to motivate some of the concepts used in the structured environ-
ment model, I present the following informal analysis of a Turing machine.

Even the most casual analysis of a Turing machine must note its decom-

position into two primary parts. Namely, a Turing machine consists of a
finite state control (or control part) and a tape (or data part). As soon as
this decomposition is noted, it is reasonable to consider how these parts

interact. At first glance one might say that the parts interact via the

positioning and writing operations which the finite state control causes to

be performed on the tape. In fact, this is sufficient to describe the

T e i

mechanism by which the tape is modified. However, these operations do not

describe the mechanism by which the finite state control receives information

from the tape. Typically, this interaction is described by specifying that
the domain of the finite state control's state transition function includes the j
value of the symbol currently under that tape head. Let me propose a slightly
different view. Suppose one assoclates two 'local" data objects with the finite
state control: a current state data object and a current symbol data object.

Further, suppose that one adds to the operational repertoir of the Turing

DRSNS SRS

machine an operation which transfers the value of the finite state control's

current symbol data object to the position on the tape which is currently under

the tape head. Also, add an operation that does the inverse. It 1is now
possible to restrict the domain of the state transition function entirely to
the values of the finite state control's two local data objects if one assumes
that each step of the computation proceeds as follows:

1) Transfer symbol under tape head to current symbol data object.

2) Compute new value for current state data object and for current

symbol data object based on the present values of these two object.
3) Write value of current symbol data object to the tape.
4) Perform desired operation to reposition to the tape head (e.g.,

Move left, No move, or Move right).

Clearly, these modifications to the traditional notion of a Turing machine
have no effect on its computational power. In fact, in most formal definitions
of a Turing machine it would not be necessary to make any change in the tuple
which describes a particular Turing machine. One would only have to change
the definition of the configuration of the Turing machine to incorporate the

value of the current symbol data object and then make the obvious change to

FE AN

the relation between two configurations (i.e., redefine a computational step

as specified above). However, these changes do have one very important effect.

They demonstrate that one can view a Turing machine as composed of two separate
parts, a control part and a data part, and that interaction between these parts
can be defined to occur only through an identifiable set of operations. Thus,
these operations precisely define the interface between the control part and
the data part of the Turing machine.

This precisely known interface is very important for at least the
following two reasons:

1) Since the only means of information flow between the process and

data parts is some known set of operations, each part is effectively J
insulated from the representation (or implementation) details of the
other. This property is of course quite unimportant in the normal
context of Turing machines, but is very important in the normal con-
text of programming. In fact, this property forms the basis of the
information hiding that is so important in the work on modules and
abstract data types.

2) It is frequently valuable to constrain the access a process may have
to data objects. If the only access a process has to some data object

is through some set of operations, then there are many constraints

that may be converted into simple restrictions on the set of sequence
of operations the process may perform on the data object. This is
certainly the underlying notion in the work concerning capabilities,
monitors, path expressions, etc.

I have presented this example to illustrate the relation between control
and data that underlies the structured environment model. Namely, I maintain
that there must be some small amount of data which is actually a part of the
control in some intuitive sense. I will refer to such data as local data.
However, it seems that there exists a natural decomposition between the control
and a large portion of the data. I will refer to such data as external data.
In fact, this example and our intuition suggest that one can reduce the local
data to an almost arbitrarily small amount. This then is an intuitive justi-
fication for only constraining the interaction between control and external
data.

I am now prepared to introduce the structured environment model. My

presentation will be heirarchical and I will only present a very abstract view

to begin with.

i S A ik A

The first three components that I wish to discuss are:
1) Processes

2) Operations

3) Data Objects.

Abstractly, a data object is an entity with an associated property usually
referred to as a value. But a value is just a property, it is derived by the
interpretation of a representation. Thus, a data object 1s really an incap-
sulation of a representation which if interpreted properly yields meaningful
information. It is the representation incapsulated in the data object that must

be manipulated to extract or change the information contained in the data object.

Since a data object is just the incapsulation of a representation of information
it is necessarily a static object. That is, a data object does not change in

any way unless its representation is manipulated by some other object. 1In

this model there are two classes of objects that may manipulate the representation
of a data object. These are the operations and processes mentioned above.

However, I will consider that data objects are divided into two classes: local

data objects and external data objects. Processes may directly manipulate local
data objects only, while operations may directly manipulate data objects of
both classes. The reason for this distinction will be brought out when pro-
cesses are discussed below. '
At this point, I wish to be somewhat vague concerning operations. 1 will
simply say that operations are performed on data objects. The effect of per-
forming an operation on a data object is to manipulate directly the represen-
tation of the data object's associated value, possible causing some change in
the information contained in the data object. For any given data object only

one operation may be performed on it at a time. That is, as far as data objects

are concerned, the performance of an operation is an indivisible operation.

An operation may only manipulate the representations of the data objects on
which it is performed. Since operations are the only class of objects allowed
to manipulate the representation of external data objects and since the only
way to extract or change the information in an external data object is to
manipulate its representation, it follows that the only way to extract or
change the information is an external data object is to perform an operation
on it. (The above discussion makes more sense if the reader considers that
the data objects on which an operation is performed may be a subset of the
data objects which one would normally refer to as the parameters of the
operations. I will discuss this much more fully later.)

So far I have described data objects for storage of information and
operations for the transformation of information stored in data objects.
All that remains in order to have a complete computational model is some way
to meaningfully sequence the performance of operations on data objects.
This is precisely the role of processes. That is, processes are the control
units of the model; they each cause a sequential sequence of actions to take
place in order to effect some computation. There are precisely two types of
actions a process may cause:

1) A process may directly manipulate the representation contained in

a local data object.
2) A process may sequentially perform operations on both local and
external data objects.

In particular, no process may directly affect another process, Thus, two
processes can only communicate through data objects. I will say that data
acted on by more than one process are shared by all those processes that act
on them. (By "act", I am referring to the two types of actions allowed to

procesges as described above.) I will also make the restriction that no

L ST Mg S A TP e < s A I <YW o 5

local data object may be shared. This has a very important implication: two

processes may communicate only by sequentially performing operations on shared

external data objects. This is the result that I believe justifies the structured
environment model as presented so far.

In summary, I have started to present a model of computation that allows
multiple interacting processes but restricts their interaction to the perfor-
mance of operations on shared data objects. I have given an intuitive argument
for the feasibility of such a restriction by examining a Turing machine and
showing that one can take the view that the finite state control only interacts
with the tape by the performance of certain operations. In Figure 1, I present
a decomposition of a Turing machine along the lines of the structured environment
as presented so far.

I would like to use this figure to review several important points:

. The process component, which I called FINITE STATE CONTROL in
the figure, is strictly sequential in its interaction with the
external data objects (in this case there is only one, TAPE).
I.E., It may perform exactly one operation at a time.
No restrictions are placed on the interaction between the FINITE
STATE_CONTROL and its local data objects, CURRENT SYMBOL and
CURRENT_STATE. Nor is anything said about how FINITE_STATE
CONTROL is implemented, except that it is sequential in its
interaction with data objects.
No restrictions are placed on the operations except to say on
which objects they are "performed”, i.e, which objects they may
manipulate directly. 1In fact, I have not prohibited operations
from performing other operations (this topic will be dealt with

later).

Process: FINITE STATE CONTROL
Data Objects:
Local: CURRENT SYMBOL, CURRENT STATE
External: TAPE
Operations:
WRITE (CURRENT SYMBOL,TAPE): Copies the symbol contained in CURRENT
SYMBOL to position on the TAPE which is currently under the
tape head.

READ (CURRENT_SYMBOL,TAPE): Copies the symbol currently under the tape

head on the TAPE into CURRENT SYMBOL.
MOVE LEFT (TAPE): Moves the TAPE's tape head left.

MOVE RIGHT (TAPE): Moves the TAPE's tape head right.

FIGURE 1. Structured environment model of a Turing

machine.

In Figure 2, I graphically depi-t the communication allowed in the structured
environment model. In order to illustrate some of the communication problems
that arise in such an environment, I would like to consider an example.
Supposc one had a system consisting of several processes ;nd a shared
output device which I shall model as a data object. Now suppose that one
wished to insure that the following two properties held in this system:
1) Proper use: Before actually sending data to be output to the
device it must be readied for use. (Consider a printer where

certain forms control and heading information might need to

precede the actual text to be printed.)

A
(:) Processes <:> Data Cbjects ’
i
. Key: . : '
G Joins proc=sses with datz objects
on which thzy perform operatiocns,
Data objects drawn inside of processes are
* local date objects belonging to the process,
~ FIGURE 2. Communication in the structured
environment model.

Proper synchronization: Only one process should be using the

device at a time. 1.E., after setting up the device for use,

the same process sﬁould retain control of the device until it

has completed its output task.
How can these properties be insured? First of all, one might note that these
are properties concerning the interaction between the processes and the output
device (an external data object).

In the structured environment model there is only one way a process may
interact with an external data object. This requires that such actions as
setting up the output device, writing to it, etc., must be incapsulated in
operations to be performed on the device. But then it should be possible
to translate the above properties into properties concerning the sequence in
which operations are performed. First, I will propose a set of operations
that may be performed on the output device. The following three operations
seem to sufficient.

1) OPEN - Prepares the output device for the next output task

2) WRITE - Causes one unit of data to be output

3) CLOSE - Signals the completion of an output task.

The above properties can now be restated in terms of the operations as follows:

1) Proper use: Each process will always perform operations on the

output device in the order: OPEN, any number of WRITEs, CLOSE.
This sequence may be repeated any number of times. No process
will perform any other operations on the output device.

2) Proper Synchronization: Once one process has performed an OPEN

no other process will perform any operation on the output device

until the first process performs a CLOSE.

Consider Figure 3, depicting the communication paths in the structured environ-
ment model for a two process version of this example.

Now consider how one might insure that the restated properties hold.

The proper use property could be insured by examining each process in
the system and verifying that each process would only perform the allowed set
of operations and then only in the allowed sequence. This method has two
outstanding drawbacks.

First of all it can be very difficult. 1In fact, it is clear that the
rigorous verification of this property could be as hard as the rigorous veri-
fication of any other property of a process., A very difficult task indeed!

Secondly, +<his method requires that the definition of all processes
(current and future) be available for examination. However, it is frequently
desirable in a multiprocess environment to be creating new processes some of
which may have been unavailable for examination. (Consider an operating
system running user processes.)

The only general solution to both these drawbacks seems to require some
sort of external constraint on the operations a process may perform on shared
data objects.

In fact, the notion of capabilities can be viewed as a very limited form
of such a constraint. A capability for a data object defines the set of
operations a process may perform on a data object., This, of course, still
leaves the very difficult problem of insuring that processes perform the proper
sequence of operations. 1 suggest that one needs a general mechanism to con-
strain the sequence of operations performed by a process on a data object. 1
therefore add to the structured environment model a component which I call a

rights controller.

- -~] - L At AR 4 8. VAT

A .
hn“* -

FIGURE 3. Structured environment model of a two
process version of the output device
example.

rv..———:====—- SERILSUNEENE

A rights controller is simply a finite state acceptor over the sequences
of operations that may be performed by a particular process on a data object.
That is, each rights controller defines a set of sequences of operations that
may be performed on a particular data object.

In order to make the rights controllers effective, there must be some way
in the structured environment model to require the process to observe the con-
straints of the appropriate rights controllers. I achieve this through the
notion of an enviromment, where an environment is defined to be a sequence of
rights controllers with the constraint that there cannot be two rights con-
trollers in the same environment controlling the performance of operations on
the same data object. I then specify that there be associated with each
process a single unique environment and that a process may only perform an
operation on an external data object if it is allowed by the appropriate
rights controller in the process's environment.

Since a rights controller is a finite state acceptor of the sequences of
operations that a process may perform on a data object, one obvious way of
describing a rights controller is a state graph with arcs labeled by operatioms.
Figure 4 describes an appropriate rights controller for the processes in the
output device example. Figure 4 also shows how this rights controller might
be described by a regular expression over operations. The specification of
the structured environment model says nothing about how rights controllers are
to be inplemented, but it does say that a process may only perform the operations
allowed by its rights controllers. Therefore, it would seem that a very reason-
able way to achieve this effect would be through a runtime monitor (i.e., an

active finite state acceptor). Thus, I prefer the state graph description for

its dynamic connotation.

\ OPEN

T

CLOSE

(open, wrITe®, cLosE)T

FIGURE 4. Two descriptions of a rights

controller.

Returning to the output device example, consider the situation of each
process that shares the output device having a copy of the rights controller
described in Figure 4 as an element of its environment. Figure 5 depicts a
two process version of such a situation. (Note that any other elements in
the process's environment cannot directly affect its interaction with the
output device because of the requirement that only one rights controller con-
strains access to the same data object in any one environment.) In Figure 5,
I have interrupted the lines connecting the processes with the output device
to indicate that the only interaction each process may have with the output
device is the performance of the operations allowed by the rights controllers.
This will be the normal way I indicate a process's environment in subsequent
figures. Thus, Figure 5 indicates that each process can only interact with
the output device in precisely the manner required by the proper use property
given above. However, it should be clear that even though each process is

trying to make proper use of the output device, there is no guarantee that

the processes will synchronize their performance of operations properly to
- achieve the proper synchronization property given above, For example.
Process 1 might perform an OPEN followed by several WRITEs and then Process 2
might perform an OPEN which clearly violates the proper synchronization
property. Clearly, the notions of environments and rights controllers are
not enough to directly handle the problem of process synchronization.
Consider, for a moment, the structured environment model as it stands so
far. I have constrained the interactions of processes to a single mechanism,
namely the performance of operations on shared data objects.
Suppose I refer to the performance of operations on external data objects

as the behavior of a process. Then one can think of a rights controller as

defining allowable behavior. It follows then that a process's environment

L o ke 1 T M e ue e e e+ e -

) =g
4 \/
OPEAJ v b'-\
YCI0SE IORITE
o

FIGURE 5. Two process version of output device

example including rights contollers.

e

defines the totality of a process's allowable behavior. However, there are
two possible ways to control behavior:

1) At its source, the process

2) At its destination, the data object.
Thus, I suggest that t..e problem of synchronization be dealt with as the behavior
arrives at a data object. To this end, I add to the structured environment
model a class of components I call synchronizing controllers. A synchronizing
controller will synchronize the operations that may be performed on a data
object in order to achieve a particular sequence of operations. Thus, the

description of a synchronizing controller is very similar to that of a rights

controller. Namely, it consists of a specification of the sequence of operations
that it allows to be performed on its associated data object. Note, however,
that there is a considerable difference of interpretation. A rights controller
defines the allowable behavior for a process. If the process violates its
allowable behavior then it is outside of the structured environment model, i.e.,
it is in error and must be aborted or something. However, a synchronizing
controller will actively attempt to achieve its required sequence of operations
by delaying processes.

I have referred to the synchronizing and delaying of processes above with-
out describing how this is done. Let me do so now.

Recall that the primary defining characteristic of a process is that it
performs a sequential sequcnce of actions. Thus, once a process begins to
perform an operation the process is essentially inactive (it cannot interact
with any data object) until the operation is completed. With this in mind I
will decompose the performance of an operation into three phases:

1) scheduling

2) execution

3) completion.

These phases must occur in the order shown above. The scheduling phase con-
sists of the operation being scheduled by the synchronizing controller associ-
ated with each of the data objects on which it is to be performed. The execution
phase occurs after the scheduling phase has completed and consists of the

actual transformation on the data objects. The completion phase occurs after

the execution phase has completed. This phase marks the completion of the
operation. That is, the process that performed the operation becomes active
again at the completion of the completion phase and is only then able to cause
more actions.

This decomposition allows me to fully explain the action of a synchronizing
controller as follows.

The synchronizing controller has one active function: it schedules
operations to be performed on its associated data object. The synchronizing
controller is an event driven component, with the following two significant
events:

1) An operation to be performed on the synchronizing controller

associated data object entering its scheduling phase,

2) An operation that is being performed on the synchronizing

controllers associated data object entering its completion
phase.

In the first event the operation will be immediately scheduled if and only
if no other operation is currently scheduled or executing on the synchronizing
controllers associated data object and the performance of the operation would
not violate the sequence of operations the synchronizing controller is trying
to achieve.

In the second event the synchronizing controller will schedule one of the

operations pending on its assoclated data object that is currently allowed in

the synchronizing controllers prescribed sequence of operations, if there are

any such operations.

Note that only one operation will be scheduled or executing at a time
under the above rules.

Now let me return to the output device example and show how a synchronizing
controller can be used to insure the specified synchronization property.

Figure 6a shows the two process version of this example which retains the
rights controllers (drawn in rectangles) developed earlier plus a synchronizing

controller (drawn in a triangle).

Consider how this system would work. Imitially 1 assume there are no
operations pending (waiting to be schedulsd), scheduled or executing on the
output device (as indicated in Figure 6a). Now suppose Process 1 attempts to
perform an OPEN operation. Since there are no other operations scheduled or
executing on the output device and since OPEN is currently allowed by the

synchronizing controller, the OPEN operation would be immediately scheduled,

thus allowing it to execute and complete. This results in the situation shown

in Figure 6b. In this situation Process 1 can perform either a WRITE operation

or a CLOSE operation, either of which would be immediately scheduled and allowed
to execute and complete. However, Process 2 can only perforn an OPEN operation
which would not be scheduled since OPEN is not currently allowed in the

synchronizing controller's prescribed sequence of operations, Thus, if Process 2

y performs an OPEN operation, it (the process) will be suspended until a CLOSE
operation is performed by Process 1. Figure 6c shows the semetric situation
where Process 2 has gained control of the output device. In fact, Figures 6a,

6b and 6c show the only three situations that are possible in this simple example.

Thus, it is quite clear that no matter how many processes shared the output

device, the proper synchronization property would hold as long as each process

had a rights controller equivalent to the ones described in these figures.

/) OPEAS
~ \ % N
. /! K ;
P %_1 &4
/

<,
9,

i | |
! . TN T g~ :
'i \‘,.‘\,4 ~. '-/\‘r-/»' “ i !
U SN
: » e Qe .!/
| ! i VWRITE
i . g 1
| L N !
N

N -
\C wrr et 5'}“g€

- T e e T
e

T

T I e

N
TN
> N
droceas " o Tretevs
\/ \ Qf
s, <!
-—-> "'—) Il ;
K o7 ' ! L T
e e | - /_\~ e .
¥ N Z
’ : “ (, 7 / } \'____/\“l/_/
. AR aevr Z Zroi P o
F 2 ORI W : : _ ’
\\.'.- < .’_.
-~ - - - /
l ~ i ., L
i - o ™ P AV
X A . T
y
o
| j
/ i
,f [}
3
.
}/
i Tor3sT <UALYTY PRACRL Calam
-+ L TISHLD 10 D¢
s
FIGURE 6¢c
y
S
}
*

Thus, by the combination of rights controllers and synchronizing controllers,
I am able to insure both of the properties concerning the sharing of the output

device. Note that the synchronizing controller by itself would not have insured

the proper synchronization property. For example, if the process yere able to
perform the operations in any sequence, then Process 1 might have performed an
OPEN operation, after which any process in the system could perform WRITE or
CLOSE operations because the synchronizing controller is not concerned with
which process is performing the operations.

I would now like to consider some extensions to the output example which

I believe will help to show how truely flexible these behavior controllers are.
Let us suppose that our output device is used for messages to the machine

operator as well as user output. Now, suppose some operator messages need to

be output immediately, i.e., before the end of some user output task. Figure 7

shows how the synchronizing controller for the output device might be modified

to allow processes that have the proper 'rights" to "preempt'" the output device
from another process. 1In Figure 7, I also describe the two reasonable rights
controllers to go along with the amended synchronizing controller. Figure 8

shows how these rights controllers might be distributed in a three process]

system. In a system with such controllers, no matter what state the synchro-
nizing controller is in due to a process with "regular rights'', a process with
"priority rights" can perform a PREEMPT operation. This will put the synchro-
nizing controller in a state where only PWRITE and RELEASE operations may be
scheduled, thus effectively preempting the output device. However, among
processes having the "priority rights" preemption cannot occur.
Note that the change to the synchronizing controller and the addition of
the new rights controller would not require any changes to the processes that
continued to use the "regular" rights controller.

Let me continue to add complexity to this example by suggesting that

A
N
/ \
\
orelN \
WRITE
// \r@\/'ﬁ\“ ,i'/’nn \
o () // ‘7—‘ \\
Ry oo ‘S £
L;".‘ ?/‘ . //k“ //-\,' ° \
» = “) NS
Y g C RCS A \
oy .
C L e
L [)) .
7 < N \
|~;/ /\-“ ‘(X/ ",‘ \\
/// k 429 Ry ‘_i/"\\ \
/ w&IYZ oloN
/ CWRITE
P — TN
;’3:-,._ w,)’:.'\ .,;C Z . LiTins \'29:;.{'9,'"
i - .
| ¢ -
CrE ; i PULIPT. s ':
L T . ! Sl M ;
Lagx By AN
0 e VAN it !
,--;v\\ ----- ’_./*Z ¢ ‘ " T‘T‘ '—-’_—”/_’ \'_, ‘
{ QSN DOWINE] Ueihies Slonst
L —l L i
Co S i) o) : s, T
P\Pqu..la.’ MISTNTL ot O et Saaantt Lo
J - ‘ .

1 FIGURE 7

b i3 i e achwieliie diNg e

. I
. S
- o LT
> o
RO 3
2 TR W)
[-
00.\.4. w.. w
pr ORI A
AR -
T (3]

PR N
]
]
!
1
1
[
i
i
i
R}
.
e
VAR,
. v
S

LIRS

a- A
a4 N

R

=
\\..v ~
\.I/ IR

T
3.0 N

ih»; -
FIGURE 8

after our hypothetical system has been in use for some time, one of the system
users might come in with the complaint that his output has operator messages
in it. Now suppose that this user's output involves the use of expensive
registered forms (e.g., payroll checks) and the system manager decides to
protect the user from preemption.

Figure 9 shows the set of controllers that could be used to effect this
change. Note that the "regular'" and ‘'priority" rights controllers are unchanged,
thus no changes would be required in the processes which continued to use them.
The change is simply to add a nonpreemptable state to the synchronizing
controller along with operations to effect the transition into and out of this
state. Note that the "nonpreemptable'" rights controller still requires the OPEN
operation first. Thus, the processes with this rights controller must still
wait their turn for initial access to the output device. That is, it was not
necessary to give these processes any special rights except the ability to
prevent preemption during critical parts of their output.

I think that this solution compares very favorably t. a more traditional
solution involving conventions cver semaphores or such, I find especially
impressive the way one is able to modify the constraints concerning the sharing
of a data object without affecting those processes which do not wish to take
advantage of the new features.

In summary, I have presented a model which I called the structured environ-
ment. In this model processes may only interact via the performance of operations
of shared data objects. I refer to this interaction as the behavior of the
processes and have shown that two types of behavioral constraints, rights
controllers and synchronizing controllers, can be used to usefully control the
interaction of the processes in a system. Some of the benefits that I feel

arise from this approach to concurrent process control are listed below:

S .
Reawlar 51 sl
J ~

R) N
P."‘O?’)TL{ i\'\la\’-‘x'\'i

J

T

l%uﬁe

P

EXVY WPy

Simpler context for verification: Certainly the restrictions on
process interaction along with the external behavior controllers
makes the verification of certain properties much simpler than it
would be in a model that required one to examine the definition of
each process.

Localized scheduling of process: All scheduling in this model occurs
in the event driven synchronizing controllers., This seems to be a
much simpler concept to implement than say a system involving con-
ditional critical regions or predicate locks.

Greater reliability through external constraints: Since the constraint
placed on a process by its rights controllers is independent of the
definition of the process, it should be straightforward to implement
a run~-time check to enforce the rights controllers. Thus, this
insures that even in a system with incorrect processes, errors would

not propagate.

Proving (ATP) can support the interdisciplinary project on Data Base

Methodology being conducted at The University of Texas.

The paper sketches some of the ways in which research in Automatic Theorem

APPENDIX 5

SOME THOUGHTS
ON
AUTOMATIC THEOREM PROVING
IN
DATA BASE DESIGN AND USE
by

W. W. Bledsoe

e

——ﬁ

DATA BASES
Here we treat a data base as a list of facts and information (which
might be distributed over several geographic locations), along with a set

of rules of inference for using these facts. (Figure 1)

LIST OF FACTS
(DISTRIBUTED)
INFERENCE RULES '

Figure 1
A Data Base

Querries to this data base are processed by
a) Direct lookup ;
b) By Inference
Also the data base must be tested somehow for internal consistency.
For example, if we have the statements
1) John is older than Mafy
2) Mary is 15 years old
in the base, we want to answer querries such as
a) Is Mary 15 years old?

b) 1Is Mary older than 257

¢) 1Is John older than 12?7
The last two, of course, would require simple inference. Much more compli-

cated cases are desirable and, to some extent, possible.

 ————————

If we add the entry
3) Mary is younger than 4 years,

what does the whole thing mean? What, if anything, can it be use for?

EXAMPLES

For example we might have a mathematical Data base (Figure 2)

MATHEMATICAL DATA BASE

LIST OF “ALL" MATHEMATICAL
THEOREMS

DEFINITIONS & AXIOMS RULES
OF INFERENCE

A. PROVE A THEOREM BY FINDING IT ALREADY IN
"THE DATA BASE.

B, PROVE A THEOREM BY INFERRING IT FROM
THEOREMS- IN THE DATA BASE.

Figure 2

We can extend this to an engineering data base (Figure 3).

MATHEMATICAL DATA BASE

LIST OF “ALL" MATHEMATICAL
THEQREMS
REMOVE SOME EXOTIC THEOREMS

DEFINITIONS & AXIOMS RULES
OF INFERENCE

\ G_INFO

STRENGTHS OF MATERIALS, ETC. ENERGY CON-
TENT OF VARIOUS FUELS, ETC. LAWS OF
PHYSICS, CHEMISTRY, ETC,

A. PROVE A’ THEOREM BY FINDING IT ALREADY IN
THE DATA BAsE.

B. PROVE A THEOREM BY INFERRING IT FROM
THEOREMS IN THE DATA BASE.

C. ANSWER QUESTION ABOUT THE DESIGN OF A
BRIDGE OR THE FEASIBILITY OF A SPACE PROBE.

Figure 3

Or extend it to a military data base (Figure 4).

MATHEMATICAL DATA BASE
LIST OF “ALL" MATHEMATICAL
THEOREMS

DEFINITIONS & AXIOMS
RULES OF INFERENCE

: ADD MILITARY INFORMATION
DISPOSITION OF OUR FORCES AND EQUIPMENT
STATE OF READINESS, ETC,

DISPOSITION OF ENEMY FORCES

CONTINGENCY OF INFEREHCING

A. PROVE A THEOREM BY FINDING IT ALREADY IN THE
DATA Base.

B. PROVE A THEOREM BY INFERRING IT FROM THEOREMS .. 4
IN THE DATA BASE.

: C. ANSWER A QUESTION ON OUR ABILITY TO REPULSE A
CONJECTURED ATTACK.

Figure 4

Many other examples easily come to mind.

SOME OBSERVATIONS

Several points can be made

* AUTOMATIC INFERENCING IS CLEARLY DESIRABLE IN
ALL SUCH EXAMPLES.

* IF WE HAD TRULY POWERFUL AUTOMATIC THEOREM PROVERS,
IT WOULD CHANGE OUR CURRENT PROPOSAL FOR DATA BASE
DESIGN,

* FOR THE NEXT 10-30 YEARS WE MUST SETTLE FOR A
"MODERATE" ABILITY OF ATPS, BUT EVENTUALLY ATP WILL
DOMINATE.

* THE PRESENT PROJECT SHOULD USE THIS MODERATE CAPAC-
ITY, USING AUTOMATIC INFERENCING BUT NOT EXPECTING
TOO MUCH.

F-ﬁqiiiii - n " T — <4“I

ATP AT THE UNIVERSITY OF TEXAS

The University of Texas has been one of the leading centers for ATP
since 1968, and is the most successful in actually carrying out proofs of
moderately difficult theorems on the computer. Our provers have been LISP

programs for the CDC 6600 computer and the DEC 10. 1In addition to a number

of theorems proved in set theory[l}, calculus[2], analysis{3,7,9), and top-
ology[3,9], we have seen our program and ideas successfully used in program
verification systems [5,6], and in incremental design of programs with docu-
mentation and verification [10]. Also we have been early propouents of new
directions [9] now finding their way in ATP research.

Others at UT (Skilossy, Simmons, Chester, and other students) have been
or are now engaged in some form of ATP resear;h. The research on inference

in semantic net [1l] seems especially pertinent here.

ROLE IN DATA BASE DESIGN ‘

We would expect to use the concepts from ATP, not the actual programs in

data base design. A éeam effort would insure that ATP ideas would be inte- L
grated into the project in an effective way.
The research would blend nicely with a larger effort here, funded by
NSF, on general ATP,
! At this time we feel that inferencing (in Data bases) can best be done
at two levels

1) At the hardware level (simple inferences)

2) At the software level.

In 2) certain "pertinent" information is retrieved from the data base

("semantic paguig'") to be used in core memory for deeper inferencing.
We believe that only a moderate capability in ATP can be depended
upon during the next 10-30 years. However in the long run ATP will be the

dominant factor in Data Base design. It is crucial that ATP research,

geared to that application, (here and elsewhere) be supported in the interim.

Two important factors in data base design are
a) conflicting data
b) changing data

These seem to point more toward
1) automatic inferencing, and

2) man-machine cooperation. |§

LONG-TERM RESEARCH INTEREST

- aa

Our group here has a long-term interest in deep inference in data bases,
where a sizable ATP capacity is required. We will be pursuing this interest
independent of this project.

Included in our concerns are

uncertain and conflicting knowledge
. predicting with probabilities

. (limited) natural language input and output

. man-machine interaction

EXAMPLE

DATA BASE

ALL THE NEWS PAPER STORIES ON
THE MIDDLE EAST FILED BY THE
MAJOR NEWS AGENCIES DURING THE
LAST 10 YEARS., (WITH OLDER
STORIES CAREFULLY CULLED)

+ RULES FOR INFERENCING

QUERRY:

WHAT 1S THE LIKELIHOOD OF SYRIA ATTACKING ISRAEL WITHIN
THE NEXT TWO DAYS?

TASK:

DETERMINE THE SOURCE OF THE MAJOR INCONSISTENCIES IN THE
DATA BASE.

We could add to this

INTELLIGENCE INFORMATION ON

+ TROOP STRENGTHS AND DEPLOYMENT
+ RECENT MOVEMENT
ETC.

IR Lt A

MAN-MACHINE INTERACTION
1.

2.,

THE USER WOULD ADD, SUBTRACT, OR CHANGE,
DATA AND INFERENCING RULES,

THE USER COULD HELP WITH THE INFERENCING ON
DIFFICULT PROBLEMS (E.G., SUGGESTING RELE-
VANT FACTS).

R

REFERENCES

1. W. W. Bledsoe, Splitting and reduction heuristics in automatic theorem
proving. A. I. Jour. 2(1971), 55-71.

2. W. W. Bledsoe, Robert S. Boyer and William H. Henneman, Computer Proofs
of Limits Theorems. A, I. Jour. 3(1972), 27-60.

3. W. W. Bledsoce and P. Bruell, A man-machine theorem-proving system.
A. I. Jour. 5(1974), 51-72.

4. W. W. Bledsoe and Mabry Tyson, The UT Interactive Theorem Prover. The
University of Texas at Austin, Math. Department Memo ATP-17, May 1975.

5. D. I. Good, R. L., London and W. W. Bledsoe, A Complete Method for Higher
Order Logic. Ph.D. thesis, Case Western Reserve Univ. Jennings
Computer Center Report 1117,

6. W. W. Bledsoe and Mabry Tyson, Typing and Proof by Cases in Program
Verification. Machine Intelligence 8, Donald Michie and E. W. Elcock
(Eds.), Ellis Horwood Limited, Chichester, pp. 30-51.

7. A. Michael Ballantyne and W. W. Bledsoe, Automatic Proofs of Theorems in
Analysis Using non-standard Techniques. J. ACM, Vol. 24(1977) pp. 353-374.

8. W. W. Bledsoe, Non~resolution Theorem Proving. University of Texas Math.
Department Memo ATP-29, Sept. 1975. To appear in the A. I. Jour.

9. W. W. Bledsoe, A Maximal Method for Set Variables in Automatic Theorem

Proving. University of Texas Math. Department Memo ATP-33A, July 1977.
To be presented at IJCAI-77, MIT, Aug. 1977. .

10. Mark Moriconi, An Interactive System for Incremental Program Design and
Verification

11. D. Chester and ‘R. F. Simmons, Influences in Quantified Semantic Networks.

B

e 3

Appendix 6

’ A COMPUTER ARCHITECTURE FOR A FDSS
Jack Lipowski

Computer architecture aims to make recent advances in hardware technology
(especially LSI) useful to the new and demanding software envisioned for a
very large distributed and intelligent data base management system. Some
preliminary architectural features of a planned system are herein sketched
and some problems for research and development are delineated.

Three major computing systems are to be accomodated. Firstly, users
interface with the data base system through a network of intelligent terminals.
Secondly, intelligent discs are located at various nodes in this network and
are powerful enough to search the data where it is stored to avoid shipping
large quantities of data through the network. Thirdly, an array computer will
use parallelism to extend the analytical capacity of artificially intelligent |
software. We submit that these three major systems have to be accomodated
because none of them alone, nor any pair of them, are adequate to support the

envisioned software. However, each system can be effectively and economi-

cally built with LST modules, so the total system will take advantage of LSI
economics. We aim to design each system so that it will interface well with
the other systems and, conversely, we are relieved of the need to perform each
function in any one system alone. The object of studying the three systems [
together is to develop each one of them to fit together later on in an integral
system. While we do not propose to build all of them in this project, but

only the intelligent disc, we will design the disc to support distributed queries

in the network and to support deep theorem proving in the array computer.
Other proposals have been or will be submitted to study the other systems.

If the other proposals are funded, they will be used in research conducted in

this proposal. Otherwise, they will be simulated in this proposed research effort.

Moreover, each system will be designed to work as I/0 devices with existing
computers to provide considerable improvement in their performance, even
though the greatest improvement in performance can only be expected from using
all three computing systems together in a total system.

In the following paragraphs, we outline the three systems. The intelligent
disc, which we plan to build, will be discussed in more detail. The other two
will be sketched for completeness.

1. Other Systems Architectures

1.1 The Network

The network will consist of small microcomputers in intelligent
terminals and intelligent secondary memories and communication will
be accomplished by packet switching in the network. Although the
terminals deserve some study, we need not specify them at this stage
except to say that they have to be able to maintain the user's schema,
a compiler for the data base language, and means to direct packets,
embodying the query, through the network to the intelligent discs.
Upon sending out a query from an intelligent terminal, the object of
a packet will generally be a file on an intelligent disc. The file
will be explained in the next section. A group of files will be at
one physical node of the network of different cylinders of the disc,
or even in tertiary memory in that node. There may be several physical
nodes distributed through the network. 1In processing a complex query,
references from one file to another will require that packets be sent
from files to files as well. In retrieving the answer to a query, |
packets will be sent out from files to intelligent terminals.

This architecture requires that the intelligent disc node be able
to examine an incoming packet to determine which file is to be operated

on. A queue of incoming packets will be buffered and scheduled by a

conventional microcomputer associated with the disc at the node.
Records will be checked for locking to prevent interference among
queues. Once a file is in position to be searched by the logic in
the intelligent disc, and all required records have been locked to
the user, the file will be entirely searched in each disc revolution,
as discussed in the next section.

Of significance, this network architecture combines the problem
of accessing file data from intelligent terminals with the problem
of solving complex queries where one file has to be linked up with
other files. It offers hope in simplifying problems of protection,
lockout and deadlock by locking records within the intelligent disc.

1.2 The Array Processor

The array processor will be used to support artificially intel-
igent software by means of parallelism. Two forms of parallelism
are useful. In vector parallelism, a very wide word width processor
is created by work on vector operands. This is commonly referred to
as single instruction stream multiple data stream (SIMD) processing.
In concurrent parallelism, small independent processors simultaneously
but independently operate on separate pieces of data. This is referred
to as multiple instruction stream multiple data stream (MIMD) processing.
In artificial intelligence programs using LISP, lists can be
"vectorized" by writing them as paranthesized strings. Operations
like EQUAL can be executed on two strings as though they were vectors.
Operations like CDR or CAR can be done in a parallel machine as
simply as in a conventional machine, but no better. However COND and
MAP do not take much advantage from vector parallelism.
In a concurrent machine, each independent processor can evaluate

different lists using standard LISP techniques. Potentially, all

e a————— e - -

LISP primitives can be executed faster through parallelism. In order

not to have to store the entire LISP interpreter in each memory, a
set of common memories store fragments of the interpreter. Each
processor can fetch instructions from one of the common memories, but
all processors accessing any one common memory must be accessing
exactly the same word in it. With a fixed prngram like a LISP
interpreter, we believe it will be possible to carefully schedule
fragments into common memories to use this technique. Then very small,
cheap processors with a small amount of local memory should be able
to efficiently execute concurrent LISP programs.

The key to both vector and concurrent parallelism is the design
of a powerful but inexpensive computer switching array. We have
submitted a proposal to NSF to build a prototype computer using such
a switch. This computer can be used to experiment with concurrent
and vector parallelism in executing artificial intelligence programs.

2. Intelligent Disc Architecture

From our earlier work on the CASSM system at the University of Florida
and from related work on the RAP system at the University of Toronto, we
have established techniques which will efficiently store relational data
bases and semantic networks on a disc. The logic associated with the disc
makes it sufficiently intelligent to resolve almost all typical relational
queries and sufficiently intelligent to greatly assist extracting useful
data from a semantic network for artificial intelligence programs.

2.1 Physical Description of Disc Hardware

The disc architecture will consist of multiple moving head discs,
in which all heads are on a common frame, and there is one head on

each disc surface. (We are looking at IBM 3330 or equivalent discs

2.2

that store about 109 bits per removable disc pack). By moving the
frame, the heads are located over a given "cylinder'. One or more
such discs will be operated together so that their "cylinders" form
a larger cylinder. The data on this larger cylinder is called here

a file. For instance, if three IBM 3330 discs are operated together,
a larger cylinder would have 60 heads on 60 surfaces. Two hundred
such files are stored on the 200 cylinders of an IBM 3330 disc.

More files may be stored in tertiary memory, and paged into cylinders
of the disc. Exactly one file will be under the moving disc heads

at any time.

In one revolution of the discs, an "instruction' is executed on
the entire file. A typical query consists of in the order of ten
instructions which will be executed on the same file. Upon receipt
of a query at an intelligent disc by the microprocessor that controls
the disc, the file requested by the query is positioned under the
heads, either by moving the heads or by moving the file in from
tertiary memory. The heads remain positioned over the file as the
disc revolves, to execute the query, for about ten revolutioms.

The heads are then positioned over the file needed by the next query.
Each head will have a "microprocessor" similar in complexity to the
popular microprocessors but having quite different organization and
instruction set. It will be attractive to put each "microprocessor"
in an LSI chip. A disc track and "microprocessor" are called here a
cell, The logic looks like a chain of identical cells. See figure 1.

Storage of Data

The file consists of records of a variable number of words,

and the words are fixed length and are divided into fields. Each

S S

word has a mark bit on the disc for content search operations.
Records correspond to tuples in the relational data base system and
to nodes in semantic networks. The first word of each record stores
a bit stack for context search operations. Other words appear to
store domain names and items in the tuple, or arcs incident from
the node in the network. See figure 2 for storage of relational
tables and figure 3 for storage of (semantic)networks. Figure 2a
shows two relations while figure 2b shows their storage on the disc.

Figure 3a shows a network like a semantic network, while figure 3b

shows storage of the network on the disc.
Note, in figure 2b that a file can contain many relations
(tables) and that each tuple (row) ié stored as a record. In this
figure, two relations (officer and parts) happen to be stored on
the same file. Note that the tuples from different relations can
be intermixed, but that a field in the first word in each tuple
or record identifies the relation that the tuple is in by a code
word. For each domain (column), a word containing a pair of code words
in fields, domain name and domain value, are stored.

Note, in figure 3b that each node is stored as a record and

records are numbered according to their position from top to bottom
in the file. For instance, node "Tom" is stored in the 21st record
from the top of the file. For each node, its corresponding record

contains in its first word a field containing the code word of the

node name and in succeeding words a pair of fields associated with
each are in the network that is incident out of the node. The fields
are best explained by example., For instance, in record 20 corresponding

to the node "John'", the arc (John, father, Tom) is represented by

2.3

2.4

the word (father, 21) where "father" is a code word and 21 is a

number, since 21 is the record number for the node "Tom".

Though not fully shown in the above examples, the key problem
is efficient storage of data. That is why code words are used rather
than character strings. A mechanism to convert between code words
and character strings by means of hardware has been worked out.
Moreover, the left field of each word can be generated by means of
a counter in the "microprocessor" associated with the disc track
rather than stored on it if the code words are consecutively numbered.
These fields that are generated in the "microprocessor" are called
imaginary fields. The user need not concern himself about whether
data is stored in real or imaginary fields, for instructions will
treat the files as shown in figures 2b or 3b, whether or not some
left fields are actually generated by hardware.

Content Searching

Each word is provided with a bit (mark bit) which can be
modified by a content search instruction. The bit is set if the
content of the word matches the argument of the instruction, and is
cleared otherwise. For instance, in figure 2b, if the operand of a
content search were P#, 30, then the mark bit of the eighth word
would be set and all other mark bits would be cleared. Content
searching is normally used to single out individual words to be
rewritten, output, or deleted.

Set Oriented Context Searching for Relational Data Bases

Each record is provided with a bit stack located in the first

word of the record. If the argument of a context search "push",

instruction is in a record, a 1 bit is pushed on the bit stack for

that record, else a 0 bit is pushed on the bit stack. A context

search instruction could "AND" the result of the search with the top

bit on each bit stack, or "OR" or "AND the COMPLEMENT", etc.
Consider a query to locate Captain Smith in figure 2. The

query is translated into the following program:

1) PUSH "IS-AN" "OFFICER"
2) AND "RANK"' "CAPTAIN"
3) AND "NAME" "SMITH"
4) MARK(OUTPUT) "LOCATION",

Instruction 1 pushes a 1 onto the bit stacks for the first and third
records, and a 0 onto that of the second record. Instruction 2
AND's a 1 bit onto the bit stack of the first record, but AND's a
0 onto the other bit stacks. Instruction 3 does the same (in this
simple example). Instruction 4 marks, by content searching within
records that have a 1 bit on top of their bit stacks, the words
whose left fields are "LOCATION". The marked words are output as
the response to this query. This query is effectively answered in

- four disc revolutions. Typical queries should be answered in ten
disc revolutions, independent of the size or complexity of the file.

In hardware, the results of the search are stored temporarily

in a one bit wide random access memory, which has 1 bit per record,
and are processed by pipelining to appear to move the results to the
bit stack so that one context search can be executed each disc
revolution., Complex Boolean queries can be anclyzed over all tuples
in a file in a number of revolutions proportional to the number of
terms in the query expression and independent of the size of the

file. (No conventional data base management system can approach

- —/—/—x

this ideal.) Moreover, there is no need for directories to locate
relations within a file and tuples from a relation can be scattered

throughout the file because the entire file is searched each disc

revolution.

2.5 Other Set-Oriented Functions

It is possible to find the intersection of two sets in two disc
revolutions. The one bit wide, RAM (mentioned in section 2.4) is
initially cleared. In the first revolution, elements (code words)

of the first set provide addresses to set bits of the RAM. In the

second revolution, elements (code words) of the second set provide
addresses to read bits from the RAM. If a 1 is read, the word of
the second set is marked. Only if an element is in the intersection
will that bit be both set and read, and the word marked. (Other
researchers have also shown that duplicates can be deleted by a
similar procedure.)

It is possible to execute an inner product '"threshold search"
as shown in figure 4. Each word on the disc has an associated

weight, as word A in record 23 has weight 3. The argument of the

instruction also has a weight. The argument, its weight, and a
storage buffer are in registers in each head.. If the word matches
the argument, the two weights are multiplied and saved in the buffer.
The bottom word of each record contains an accumulator, the number
in the buffer is added to it. Thus, an inner product "threshold"

search can be conducted simultaneously over all records in a file.

The buffer can also be used for simpler functions. The maximum,
minimum, sum or count of marked words can be conducted in each

record or the entire file. In particular, after an inner product

2.6

threshold search, the set with the maximum accumulator value can be
marked. Equally important, the number of marked words can be counted

before they are output, to determine whether there are too many to

be of interest.

Network Oriented Context Search Instructions

Pointers from one record to another are stored by putting the
record number of the second record in the right field of a word in
the first record.
from record 20 (for "John") points to record 21 (for "Tom"). The
RAM discussed earlier is used to transfer tokens. The RAM is
initially cleared.
found in the left field of a word in a record having a 1 bit on the
top of its stack, the right field is used as an address to set a
bit in the RAM.
records as they pass over the head is used to address the RAM to
push the values stored there onto the bit stacks of the records.
Pipelining allows the second revolution to be "hidden" so that
tokens can be effectively transferred in one disc revolution.

Consider a query to find the grandsons of "John" in figure 3.

The instructions are:

1
2)
3)

4)

After the first revolution, a 1 is effectively pushed onto the bit

stack of record 20, and a 0 is pushed onto all other stacks as

PUSH
PUSH
PUSH

MARK (OUTPUT)

discussed in section 2.4.

See figure 3 again, where the "father" pointer

If the argument of a token transfer search is

In the following revolution, a counter that counts

HIS-A"’ "John"

"FATHER", TOKEN
"FATHER", TOKEN

"IS—A", ——— .

After the second revolution, a 1 bit is

2.7

pushed onto the bit stacks of records 21 and 23 simultaneously, and
after the third, a 1 bit is pushed onto that of record 25. After
the next revolution, the work "IS-A", "BILL" is output. Such a
query 1s effectively executed in four revolutions.

One of the most useful applications of pointers and token

transfers across pointers is semantic paging for deep theorem
proving programs. See figure 5. Context addressing, threshold
searching and so on can be used to select one or more nodes of a
network. Then tokens can be transferred without regard to pointer
names from these nodes in n layers, one layer per revolution, to
mark a subgraph containing the selected nodes and all nodes up to
n arcs distant from the node. The records so marked can then be
paged into a parallel computer for analysis by a deep theorem proving
program. Semantic paging should effectively filter the data to

a small size subgraph that is manageable in a parallel computer,
so that it can thoroughly analyze the subgraph at high speed.

Other Hardware Functions

The disc "microprocessor" will also collect garbage words by
a hardware mechanism that operates concurrently with instructions
that are evaluating a query. Also, data can be input and marked
words can be output while instructions are processing a query.
(Interlocks will be provided so that inputs or outputs from one
query are not mixed with those from another.) Character string to
code word translation is carried out automatically upon input and
code word to character string translation is automatically carried
out on output. Finally, disc processor instructions are to be

stored on and fetched from the disc itself to manage 'demons".

The disc is capable of storing a large number of "demons' by

storing data words and instruction words in records. Data words

are searched by context or by token transfer to activate instruction

words in the records satisfying a query. The activated instructions

are executed on the disc one at a time as they are deactivated.

These concurrent hardware functions increase the performance of the

intelligent disc, and make possible some new and possibly revolu-

tionary software techniques.

3. Parallel Computation in Automatic Theorem Proving

There are several ways in which parallel computation might speed up an

automatic prover.

A.

Evaluating an And-node.

Whenever the prover is asked to prove a subgoal like

Vx (P (x),Q(x))

one processor can be asked to prove P(x) (ie., to find a value
or values, for x that will satisfy this formula), and another
processor can be asked to prove Q(x). The answers from these two
would then be reconciled (if possible) to obtain a common value
(or values) or x satisfying by A(x) and B(x).
Evaluating an Or-node.

Whenever the prover is proving an or-node of the form A, B,
or is trying a list of possible strategies to obtain the proof of
a given subgoal, a separate processor can be assigned to work each

of A and B , or each of the strategies. The subgoal would be

satisfied when one of these processors succeeded.

S ﬂgp-------!l--_!l-lI!Illl-II---l!lI!l—!-l-.l

c. Simplification and Reduction.
Much of modern theorem proving involves rewriting a formula
into a canonical form. For example, the foermula (1 +y - 5 + x)
might be rewritten as (x + y - 4), or the formula (xe AnB) might
be rewritten as ((xeA)Al(xeA)). Parallel processors could

greatly speed up this kind of process.

Many of these examples of parallel computation can be handled
by an extension of LISP which would allow a parallel COND. That

is for the command

(COND
(P A)
(Q B)
(R €)),

it would simultaneously calculate P, O, and R, determine

which was true, and return accordingly A, B, or C (or some

function of them if more than one of P, Q, and R was true).

B S

FIGURES

The figures are selected from the enclosed view graphs. Numbers are

shown on the bottom left of each view graph.

The figures for this Appendix appear in the

Figure
1
2a
2b
3a

3b

Number of View Graph
7
13b
13a
2la
21b
17

22

order in which they are listed.

[‘ INTELLIGENT DISC
(LOGICAL)

A TR

T

LA T e Ry

SIS

. e b

DR
ST

Q‘;\J

... J

......

il ..‘Z\':' 2 "
o / M{' ;__________.;"i"’ D 5
COYY RN s
RECORDS: Ty i T \\&E/ﬁ/}“
(VARIABLE _ENGTH) polaa § SEGMENTS : :

H
[YALTARL
W

", L2 .
i3 (FIXED LENGTH) . :

SOFTWARE HARDWARE |

OFFICER
NAME | LOCATION | RANK

SMITH | ELGIN AFB| CAPT,

1 1]

JONES | PENTAGON | _COL.

PARTS
P# QUANTITY

[iz01)__ 35 e

TUPLES ARE STORED AS RECORDS

IS_AN OFFICER
NAME SMITH
LOCATION ELGIN AFB
RANK CAPT
IS_A PARTS

P# 301
QUANTITY 3B
IS_AN OFFICER
NAME JONES
LOCATION | PENTAGON
RANK COL,

i
1

?
Y
!
]

LIVES_IN

LIVES_IN

-

20

21

22

23

24

25

IS_A JORN
FATHER 21
FATHER 23
LIVES_IN 22
IS A TOM
LIVES_IN 22
IS_A DALLAS
IS_A SAM
FATHER 25
LIVES_IN 24
IS_A AUSTIN
IS_A BILL

NODES ARE STORED AT RECORDS.

ARCS ARE STORED AS RECORD
NUMBERS.

THRESHOLD FUNCTION

SEARCH
. —
RECORD PAIR] ATTRIBUTE
2% WEIGHT
A
3
ACCUMULATOR | 21
A
RECORD PAIR {QQ{;},‘;UTE 7
25
\
ACCUMULATOR { 34

A_| -ATTRIBUTE

2 | -WEIGHT

(1 BUFFER

SEMANTIC PAGING

‘w—w‘

] ~So - — 7
f 1) seLecT NODE(S) BY CONTENT OR CONTEXT.

?) TRANSFER TOKENS OUT THROUGH ARCS N TIMES.,
1 3) OUTPUT ALL NODES WHICH RECEIVED TOKENS.

